People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hjort, Martin
Lund University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2018Self-assembled InN quantum dots on side facets of GaN nanowirescitations
- 2017Crystal Structure Induced Preferential Surface Alloying of Sb on Wurtzite/Zinc Blende GaAs Nanowirescitations
- 2015Electrical and Surface Properties of InAs/InSb Nanowires Cleaned by Atomic Hydrogencitations
- 2015Surface morphology of Au-free grown nanowires after native oxide removal.citations
- 2014III–V Nanowire Surfaces
- 2013Epitaxial growth and surface studies of the Half Heusler compound NiTiSn (001)citations
- 2012Al2O3/InAs metal-oxide-semiconductor capacitors on (100) and (111)B substratescitations
- 2011Interface composition of atomic layer deposited HfO2 and Al2O3 thin films on InAs studied by X-ray photoemission spectroscopycitations
- 2011Doping profile of InP nanowires directly imaged by photoemission electron microscopycitations
Places of action
Organizations | Location | People |
---|
article
Electrical and Surface Properties of InAs/InSb Nanowires Cleaned by Atomic Hydrogen
Abstract
We present a study of InAs/InSb heterostructured nanowires by X-ray photoemission spectroscopy (XPS), scanning tunneling microscopy (STM), and in-vacuum electrical measurements. Starting with pristine nanowires covered only by the native oxide formed through exposure to ambient air, we investigate the effect of atomic hydrogen cleaning on the surface chemistry and electrical performance. We find that clean and unreconstructed nanowire surfaces can be obtained simultaneously for both InSb and InAs by heating to 380 +/- 20 degrees C under an H-2 pressure 2 X 10(-6) mbar. Through electrical measurement of individual nanowires, we observe an increase in conductivity of 2 orders of magnitude by atomic hydrogen cleaning, which we relate through theoretical simulation to the contact-nanowire junction and nanowire surface Fermi level pinning. Our study demonstrates the significant potential of atomic hydrogen cleaning regarding device fabrication when high quality contacts or complete control of the surface structure is required. As hydrogen cleaning has recently been shown to work for many different types of III-V nano-wires, our findings should be applicable far beyond the present materials system.