Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Leppert, Linn

  • Google
  • 7
  • 39
  • 187

University of Twente

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Halide Mixing in Cs2AgBi(IxBr1-x)6 Double Perovskites2citations
  • 2023Chemical mapping of excitons in halide double perovskites25citations
  • 2023Right band gaps for the right reason at low computational cost with a meta-GGA24citations
  • 2023Conduction band tuning by controlled alloying of Fe into Cs2AgBiBr6 double perovskite powders14citations
  • 2022Tuning Defects in a Halide Double Perovskite with Pressure28citations
  • 2022Charge Reservoirs in an Expanded Halide Perovskite Analog: Enhancing High-Pressure Conductivity through Redox-Active Molecules.14citations
  • 2019Tuning the bandgap of Cs2AgBiBr6 through dilute tin alloying.80citations

Places of action

Chart of shared publication
Gijsberg, Zamorano
1 / 1 shared
Biega, Raisa Ioana
1 / 1 shared
Hutter, Eline M.
2 / 33 shared
Hüskens, Maxim
1 / 1 shared
Jöbsis, Huygen J.
2 / 7 shared
Biega, Raisa-Ioana
1 / 2 shared
Filip, Mr
1 / 10 shared
Chen, Yinan
1 / 2 shared
Kümmel, Stephan
1 / 1 shared
Sun, Jianwei
1 / 1 shared
Aschebrock, Thilo
1 / 1 shared
Lebeda, Timo
1 / 1 shared
Fykouras, Kostas
1 / 1 shared
Reinders, Joost W. C.
1 / 1 shared
Katwijk, Jacco Van
1 / 1 shared
Vollmer, Ina
1 / 2 shared
Muscarella, Loreta A.
1 / 10 shared
Dorresteijn, Joren M.
1 / 2 shared
Arens, Tjom
1 / 1 shared
Mao, Wendy L.
1 / 4 shared
Wolf, Nathan R.
1 / 1 shared
Slavney, Adam H.
2 / 4 shared
Jaffe, Adam
1 / 2 shared
Karunadasa, Hemamala I.
2 / 6 shared
Karunadasa, Hemamala
1 / 1 shared
Matheu, Roc
1 / 5 shared
Breidenbach, Aaron
1 / 1 shared
Lee, Young
1 / 1 shared
Wolf, Nathan
1 / 1 shared
Ke, Feng
1 / 1 shared
Liu, Zhenxian
1 / 3 shared
Lin, Yu
1 / 3 shared
Mack, Stephanie A.
1 / 2 shared
Toney, Michael F.
1 / 30 shared
Gold-Parker, Aryeh
1 / 7 shared
Salleo, Alberto
1 / 38 shared
Stebbins, Jonathan F.
1 / 5 shared
Neaton, Jeffrey B.
1 / 9 shared
Lindquist, Kurt
1 / 2 shared
Chart of publication period
2024
2023
2022
2019

Co-Authors (by relevance)

  • Gijsberg, Zamorano
  • Biega, Raisa Ioana
  • Hutter, Eline M.
  • Hüskens, Maxim
  • Jöbsis, Huygen J.
  • Biega, Raisa-Ioana
  • Filip, Mr
  • Chen, Yinan
  • Kümmel, Stephan
  • Sun, Jianwei
  • Aschebrock, Thilo
  • Lebeda, Timo
  • Fykouras, Kostas
  • Reinders, Joost W. C.
  • Katwijk, Jacco Van
  • Vollmer, Ina
  • Muscarella, Loreta A.
  • Dorresteijn, Joren M.
  • Arens, Tjom
  • Mao, Wendy L.
  • Wolf, Nathan R.
  • Slavney, Adam H.
  • Jaffe, Adam
  • Karunadasa, Hemamala I.
  • Karunadasa, Hemamala
  • Matheu, Roc
  • Breidenbach, Aaron
  • Lee, Young
  • Wolf, Nathan
  • Ke, Feng
  • Liu, Zhenxian
  • Lin, Yu
  • Mack, Stephanie A.
  • Toney, Michael F.
  • Gold-Parker, Aryeh
  • Salleo, Alberto
  • Stebbins, Jonathan F.
  • Neaton, Jeffrey B.
  • Lindquist, Kurt
OrganizationsLocationPeople

document

Chemical mapping of excitons in halide double perovskites

  • Biega, Raisa-Ioana
  • Leppert, Linn
  • Filip, Mr
  • Chen, Yinan
Abstract

Halide double perovskites comprise an emerging class of semiconductors with tremendous chemical and electronic diversity. While their band structure features can be understood from frontier-orbital models, chemical intuition for optical excitations remains incomplete. Here, we use ab initio many-body perturbation theory within the GW and the Bethe–Salpeter equation approach to calculate excited-state properties of a representative range of Cs2BB′Cl6 double perovskites. Our calculations reveal that double perovskites with different combinations of B and B′ cations display a broad variety of electronic band structures and dielectric properties and form excitons with binding energies ranging over several orders of magnitude. We correlate these properties with the orbital-induced anisotropy of charge-carrier effective masses and the long-range behavior of the dielectric function by comparing them with the canonical conditions of the Wannier–Mott model. Furthermore, we derive chemically intuitive rules for predicting the nature of excitons in halide double perovskites using computationally inexpensive density functional theory calculations.

Topics
  • density
  • perovskite
  • theory
  • semiconductor
  • density functional theory
  • band structure