People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gasparini, Nicola
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Dark Current in Broadband Perovskite–Organic Heterojunction Photodetectors Controlled by Interfacial Energy Band Offsetcitations
- 2024A novel selenophene based non-fullerene acceptor for near-infrared organic photodetectors with ultra-low dark currentcitations
- 2023Semitransparent Organic Photovoltaics Utilizing Intrinsic Charge Generation in Non‐Fullerene Acceptorscitations
- 2023Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructurecitations
- 2023Neuromorphic computing based on halide perovskitescitations
- 2022Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Non‐Fullerene Acceptors for Biometric Monitoringcitations
- 2022Synthetic nuances to maximize n-type organic electrochemical transistor and thermoelectric performance in fused lactam polymerscitations
- 2022Correlating Acceptor Structure and Blend Nanostructure with the Photostability of Nonfullerene Organic Solar Cellscitations
- 2022Synthetic Nuances to Maximize n-Type Organic Electrochemical Transistor and Thermoelectric Performance in Fused Lactam Polymers.citations
- 2022Overcoming nanoscale inhomogeneities in thin-film perovskites via exceptional post-annealing grain growth for enhanced photodetectioncitations
- 2021Interface Molecular engineering for laminated monolithic perovskite/silicon tandem solar cells with 80.4% fill factorcitations
- 2021Ternary organic photodetectors based on pseudo-binaries nonfullerene-based acceptorscitations
- 2020Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stabilitycitations
- 2020Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability.citations
- 2020Unraveling the Complex Nanomorphology of Ternary Organic Solar Cells with Multimodal Analytical Transmission Electron Microscopycitations
- 2019Favorable Mixing Thermodynamics in Ternary Polymer Blends for Realizing High Efficiency Plastic Solar Cellscitations
- 2017Indacenodithienothiophene-Based Ternary Organic Solar Cellscitations
- 2017Controlling charge carrier recombination in ternary organic solar cells ; Unterdrückung von Ladungsträgerrekombination in ternären organischen Solarzellen
- 2016A Series of Pyrene-Substituted Silicon Phthalocyanines as Near-IR Sensitizers in Organic Ternary Solar Cellscitations
- 2015Integrated Molecular, Morphological and Interfacial Engineering towards Highly Efficient and Stable Solution-processed Small Molecule Organic Solar Cellscitations
Places of action
Organizations | Location | People |
---|
article
Overcoming nanoscale inhomogeneities in thin-film perovskites via exceptional post-annealing grain growth for enhanced photodetection
Abstract
Antisolvent-assisted spin coating has been widely used for fabricating metal halide perovskite films with smooth and compact morphology. However, localized nanoscale inhomogeneities exist in these films owing to rapid crystallization, undermining their overall optoelectronic performance. Here, we show that by relaxing the requirement for film smoothness, outstanding film quality can be obtained simply through a post-annealing grain growth process without passivation agents. The morphological changes, driven by a vaporized methylammonium chloride (MACl)–dimethylformamide (DMF) solution, lead to comprehensive defect elimination. Our nanoscale characterization visualizes the local defective clusters in the as-deposited film and their elimination following treatment, which couples with the observation of emissive grain boundaries and excellent inter- and intragrain optoelectronic uniformity in the polycrystalline film. Overcoming these performance-limiting inhomogeneities results in the enhancement of the photoresponse to low-light (<0.1 mW cm–2) illumination by up to 40-fold, yielding high-performance photodiodes with superior low-light detection.