People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Andrade, Maria Madalena Dionísio
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Cryoprotective Polysaccharides with Ordered Gel Structures Induce Ice Growth Anticipation and Survival Enhancement during Cell Cryopreservationcitations
- 2023Study of the mesomorphic properties and conductivity of n-alkyl-2-picolinium ionic liquid crystalscitations
- 2022Polyhydroxyalkanoates from A Mixed Microbial Culturecitations
- 2022Synthesis and characterisation of ionic liquid crystals based on substituted pyridinium cationscitations
- 2021How Molecular Mobility, Physical State, and Drug Distribution Influence the Naproxen Release Profile from Different Mesoporous Silica Matricescitations
- 2021Influence of natural deep eutectic systems in water thermal behavior and their applications in cryopreservationcitations
- 2021Poly(L-lactic acid)/lithium ferrite compositescitations
- 2019A process engineering approach to improve production of P(3HB) by cupriavidus necator from used cooking oilcitations
- 2017Relaxation behavior of polyurethane networks with different composition and crosslinking densitycitations
- 2017Stabilizing Unstable Amorphous Menthol through Inclusion in Mesoporous Silica Hostscitations
- 2016Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systemscitations
- 2016Accessing the Physical State and Molecular Mobility of Naproxen Confined to Nanoporous Silica Matrixescitations
- 2015Design of controlled release systems for THEDES - Therapeutic deep eutectic solvents, using supercritical fluid technologycitations
- 2015Electrical properties of lithium ferrite nanoparticles dispersed in a styrene-isoprene-styrene copolymer matrixcitations
- 2015Dipolar motions and ionic conduction in an ibuprofen derived ionic liquidcitations
- 2014Influence of nanoscale confinement on the molecular mobility of ibuprofencitations
- 2014Conversion of fat-containing waste from the margarine manufacturing process into bacterial polyhydroxyalkanoatescitations
- 2014Ion jelly conductive properties using dicyanamide-based ionic liquidscitations
- 2014Self-standing elastomeric composites based on lithium ferrites and their dielectric behaviorcitations
- 2013New method to analyze dielectric relaxation processescitations
- 2012Probing radiation damage by alternated current conductivity as a method to characterize electron hopping conduction in DNA moleculescitations
- 2012Understanding the Ion Jelly Conductivity Mechanismcitations
- 2011Kinetics of free radical polymerization probed by dielectric relaxation spectroscopy under high conductivity conditionscitations
- 2011Molecular dynamics of poly(ATRIF) homopolymer and poly(AN-co-ATRIF) copolymer investigated by dielectric relaxation spectroscopycitations
- 2011Phase Transformations Undergone by Triton X-100 Probed by Differential Scanning Calorimetry and Dielectric Relaxation Spectroscopycitations
- 2007Dielectric and mechanical relaxation processes in methyl acrylate/tri-ethyleneglycol dimethacrylate copolymer networkscitations
- 2007Temperature modulated DSC study of the kinetics of free radical isothermal network polymerizationcitations
- 2007Origin of glassy dynamics in a liquid crystal studied by broadband dielectric and specific heat spectroscopycitations
- 2006Changes in molecular dynamics upon formation of a polymer dispersed liquid crystalcitations
- 2005Rotational Mobility in a Crystal Studied by Dielectric Relaxation Spectroscopy. An Experiment for the Physical Chemistry laboratorycitations
- 2002Dielectric studies of the nematic mixture E7 on a hdroxypropylcellulose substratecitations
Places of action
Organizations | Location | People |
---|
article
Stabilizing Unstable Amorphous Menthol through Inclusion in Mesoporous Silica Hosts
Abstract
<p>The amorphization of the readily crystallizable therapeutic ingredient and food additive, menthol, was successfully achieved by inclusion of neat menthol in mesoporous silica matrixes of 3.2 and 5.9 nm size pores. Menthol amorphization was confirmed by the calorimetric detection of a glass transition. The respective glass transition temperature, T<sub>g</sub> = -54.3 °C, is in good agreement with the one predicted by the composition dependence of the T<sub>g</sub> values determined for menthol:flurbiprofen therapeutic deep eutectic solvents (THEDESs). Nonisothermal crystallization was never observed for neat menthol loaded into silica hosts, which can indicate that menthol rests as a full amorphous/supercooled material inside the pores of the silica matrixes. Menthol mobility was probed by dielectric relaxation spectroscopy, which allowed to identify two relaxation processes in both pore sizes: a faster one associated with mobility of neat-like menthol molecules (α-process), and a slower, dominant one due to the hindered mobility of menthol molecules adsorbed at the inner pore walls (S-process). The fraction of molecular population governing the α-process is greater in the higher (5.9 nm) pore size matrix, although in both cases the S-process is more intense than the α-process. A dielectric glass transition temperature was estimated for each α (T<sub>g,dielc(α)</sub>) and S (T<sub>g,dielc(S)</sub>) molecular population from the temperature dependence of the relaxation times to 100 s. While T<sub>g,dielc(α)</sub> agrees better with the value obtained from the linearization of the Fox equation assuming ideal behavior of the menthol:flurbiprofen THEDES, T<sub>g,dielc(S)</sub> is close to the value determined by calorimetry for the silica composites due to a dominance of the adsorbed population inside the pores. Nevertheless, the greater fraction of more mobile bulk-like molecules in the 5.9 nm pore size matrix seems to determine the faster drug release at initial times relative to the 3.2 nm composite. However, the latter inhibits crystallization inside pores since its dimensions are inferior to menthol critical size for nucleation. This points to a suitability of these composites as drug delivery systems in which the drug release profile can be controlled by tuning the host pore size.</p>