People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Janaszewska, Anna
University of Łódź
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Dendrimersomes: Biomedical applicationscitations
- 2020Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Effcient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery
- 2020Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Ecient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Deliverycitations
- 2019Pyrrolidone-modified PAMAM dendrimers enhance anti-inflammatory potential of indomethacin in vitrocitations
- 2017Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Linescitations
- 2015Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological actioncitations
Places of action
Organizations | Location | People |
---|
article
Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines
Abstract
In the last couple of decades, photodynamic therapy emerged as a useful tool in the treatment of basal cell carcinoma. However, it still meets limitations due to unfavorable properties of photosensitizers such as poor solubility or lack of selectivity. Dendrimers, polymers widely studied in biomedical field, may play a role as photosensitizer carriers and improve the efficacy of photodynamic treatment. Here, we describe the evaluation of an electrostatic complex of cationic phosphorus dendrimer and rose bengal in such aspects as singlet oxygen production, cellular uptake, and phototoxicity against three basal cell carcinoma cell lines. Rose bengal–cationic dendrimer complex in molar ratio 5:1 was compared to free rose bengal. Obtained results showed that the singlet oxygen production in aqueous medium was significantly higher for the complex than for free rose bengal. The cellular uptake of the complex was 2–7-fold higher compared to a free photosensitizer. Importantly, rose bengal, rose bengal–dendrimer complex, and dendrimer itself showed no dark toxicity against all three cell lines. Moreover, we observed that phototoxicity of the complex was remarkably enhanced presumably due to high cellular uptake. On the basis of the obtained results, we conclude that rose bengal–cationic dendrimer complex has a potential in photodynamic treatment of basal cell carcinoma.