People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Palmans, Ara Anja
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (36/36 displayed)
- 2024Enhanced Efficiency of Pd(0)-Based Single Chain Polymeric Nanoparticles for in Vitro Prodrug Activation by Modulating the Polymer’s Microstructurecitations
- 2023Dynamic covalent networks with tunable dynamicity by mixing acylsemicarbazides and thioacylsemicarbazidescitations
- 2022Elucidating the Stability of Single-Chain Polymeric Nanoparticles in Biological Media and Living Cellscitations
- 2022Developing Pd(ii) based amphiphilic polymeric nanoparticles for pro-drug activation in complex mediacitations
- 2022Spectrally PAINTing a Single Chain Polymeric Nanoparticle at Super-Resolutioncitations
- 2021Compartmentalized Polymers for Catalysis in Aqueous Mediacitations
- 2021Consequences of Chirality in Directing the Pathway of Cholesteric Helix Inversion of π-Conjugated Polymers by Lightcitations
- 2020Long-lived charge-transfer state from B−N frustrated Lewis pairs enchained in supramolecular copolymerscitations
- 2020Tuning polymer properties of non-covalent crosslinked PDMS by varying supramolecular interaction strengthcitations
- 2019Detailed approach to investigate thermodynamically controlled supramolecular copolymerizationscitations
- 2019Detailed approach to investigate thermodynamically controlled supramolecular copolymerizations
- 2019Stereocomplexes of discrete, isotactic lactic acid oligomers conjugated with oligodimethylsiloxanescitations
- 2019Future of supramolecular copolymers unveiled by reflecting on covalent copolymerizationcitations
- 2019Equilibrium model for supramolecular copolymerizationscitations
- 2018Supramolecular block copolymers under thermodynamic controlcitations
- 2018Supramolecular block copolymers under thermodynamic control
- 2017Self-assembly of hydrogen-bonding gradient copolymerscitations
- 2017Self-assembly of hydrogen-bonding gradient copolymers:sequence control via tandem living radical polymerization with transesterificationcitations
- 2015The coil-to-globule transition of single-chain polymeric nanoparticles with a chiral internal secondary structurecitations
- 2015Modular synthetic platform for the construction of functional single-chain polymeric nanoparticles:from aqueous catalysis to photosensitizationcitations
- 2015Modular synthetic platform for the construction of functional single-chain polymeric nanoparticlescitations
- 2014Consequences of block sequence on the orthogonal folding of triblock copolymerscitations
- 2014The effect of pendant benzene-1,3,5-tricarboxamides in the middle block of ABA triblock copolymers : synthesis and mechanical propertiescitations
- 2014Folding triblock copolymers
- 2014Folding polymers with pendant hydrogen bonding motifs in water : the effect of polymer length and concentration on the shape and size of single-chain polymeric nanoparticles
- 2014Folding polymers with pendant hydrogen bonding motifs in water : the effect of polymer length and concentration on the shape and size of single-chain polymeric nanoparticlescitations
- 2013Sticky Supramolecular Grafts Stretch Single Polymer Chainscitations
- 2013Orthogonal self-assembly in folding block copolymerscitations
- 2012Benzene-1,3,5-tricarboxamide : a versatile ordering moiety for supramolecular chemistry
- 2012Benzene-1,3,5-tricarboxamide : a versatile ordering moiety for supramolecular chemistrycitations
- 2010Hydrolases part I : enzyme mechanism, selectivity and control in the synthesis of well-defined polymerscitations
- 2007Supramolecular copolyesters with tunable properties
- 2007Supramolecular copolyesters with tunable propertiescitations
- 2007Poly(caprolactone-co-oxo-crown ether)-based poly(urethane)urea for soft tissue engineering applicationscitations
- 2006Oxo-crown-ethers as comonomers for tuning polyester properties
- 2006Oxo-crown-ethers as comonomers for tuning polyester propertiescitations
Places of action
Organizations | Location | People |
---|
article
Detailed approach to investigate thermodynamically controlled supramolecular copolymerizations
Abstract
<p>Elucidating the microstructure of supramolecular copolymers remains challenging, despite the progress in the field of supramolecular polymers. In this work, we present a detailed approach to investigate supramolecular copolymerizations under thermodynamic control. Our approach provides insight into the interactions of different types of monomers and hereby allows elucidating the microstructure of copolymers. We select two monomers that undergo cooperative supramolecular polymerization by way of threefold intermolecular hydrogen bonding in a helical manner, namely, benzene-1,3,5-tricarboxamide (BTA) and benzene-1,3,5-tris(carbothioamide) (thioBTA). Two enantiomeric forms and an achiral analogue of BTA and thioBTA are synthesized and their homo- and copolymerizations are studied using light scattering techniques, infrared, ultraviolet, and circular dichroism spectroscopy. After quantifying the thermodynamic parameters describing the homopolymerizations, we outline a method to follow the self-assembly of thioBTA derivatives in the copolymerization with BTA, which involves monitoring a characteristic spectroscopic signature as a function of temperature and relative concentration. Using modified types of sergeants-and-soldiers and majority-rules experiments, we obtain insights into the degree of aggregation and the net helicity. In addition, we apply a theoretical model of supramolecular copolymerization to substantiate the experimental results. We find that the model describes the two-component system well and allows deriving the hetero-interaction energies. The interactions between the same kinds of monomers (BTA-BTA and thioBTA-thioBTA) are slightly more favorable than those between different monomers (BTA-thioBTA), corresponding to a nearly random copolymerization. Finally, to study the interactions of the monomers at the molecular level, we perform density functional theory-based computations. The results corroborate that the two-component system exhibits a random distribution of the two monomer units along the copolymer chain.</p>