Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ten Eikelder, Huub

  • Google
  • 4
  • 9
  • 267

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2019Detailed approach to investigate thermodynamically controlled supramolecular copolymerizations31citations
  • 2019Equilibrium model for supramolecular copolymerizations48citations
  • 2019Equilibrium model for supramolecular copolymerizations48citations
  • 2018Supramolecular block copolymers under thermodynamic control140citations

Places of action

Chart of shared publication
Palmans, Ara Anja
3 / 36 shared
Windt, Lafayette N. J. De
1 / 2 shared
Markvoort, Albert
3 / 3 shared
Meijer, Ew Bert
2 / 48 shared
Markvoort, Bart
1 / 1 shared
Palmans, Anja
1 / 1 shared
Adelizzi, Beatrice
1 / 4 shared
Aloi, Antonio
1 / 2 shared
Voets, Ilja
1 / 9 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Palmans, Ara Anja
  • Windt, Lafayette N. J. De
  • Markvoort, Albert
  • Meijer, Ew Bert
  • Markvoort, Bart
  • Palmans, Anja
  • Adelizzi, Beatrice
  • Aloi, Antonio
  • Voets, Ilja
OrganizationsLocationPeople

article

Detailed approach to investigate thermodynamically controlled supramolecular copolymerizations

  • Palmans, Ara Anja
  • Windt, Lafayette N. J. De
  • Markvoort, Albert
  • Ten Eikelder, Huub
  • Meijer, Ew Bert
Abstract

<p>Elucidating the microstructure of supramolecular copolymers remains challenging, despite the progress in the field of supramolecular polymers. In this work, we present a detailed approach to investigate supramolecular copolymerizations under thermodynamic control. Our approach provides insight into the interactions of different types of monomers and hereby allows elucidating the microstructure of copolymers. We select two monomers that undergo cooperative supramolecular polymerization by way of threefold intermolecular hydrogen bonding in a helical manner, namely, benzene-1,3,5-tricarboxamide (BTA) and benzene-1,3,5-tris(carbothioamide) (thioBTA). Two enantiomeric forms and an achiral analogue of BTA and thioBTA are synthesized and their homo- and copolymerizations are studied using light scattering techniques, infrared, ultraviolet, and circular dichroism spectroscopy. After quantifying the thermodynamic parameters describing the homopolymerizations, we outline a method to follow the self-assembly of thioBTA derivatives in the copolymerization with BTA, which involves monitoring a characteristic spectroscopic signature as a function of temperature and relative concentration. Using modified types of sergeants-and-soldiers and majority-rules experiments, we obtain insights into the degree of aggregation and the net helicity. In addition, we apply a theoretical model of supramolecular copolymerization to substantiate the experimental results. We find that the model describes the two-component system well and allows deriving the hetero-interaction energies. The interactions between the same kinds of monomers (BTA-BTA and thioBTA-thioBTA) are slightly more favorable than those between different monomers (BTA-thioBTA), corresponding to a nearly random copolymerization. Finally, to study the interactions of the monomers at the molecular level, we perform density functional theory-based computations. The results corroborate that the two-component system exhibits a random distribution of the two monomer units along the copolymer chain.</p>

Topics
  • density
  • microstructure
  • theory
  • experiment
  • Hydrogen
  • density functional theory
  • random
  • copolymer
  • self-assembly
  • light scattering
  • circular dichroism spectroscopy