Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Coughlin, Mckenzie L.

  • Google
  • 3
  • 8
  • 59

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Phase Behavior of Linear-Bottlebrush Block Polymers26citations
  • 2022Impact of Side-Chain Length on the Self-Assembly of Linear-Bottlebrush Diblock Copolymers14citations
  • 2019Properties of Chemically Cross-Linked Methylcellulose Gels19citations

Places of action

Chart of shared publication
Weigand, Steven
2 / 4 shared
Bates, Frank S.
3 / 90 shared
Solomon, Lucy Liberman
2 / 2 shared
Edmund, Jerrick
1 / 1 shared
Ertem, S. Piril
1 / 1 shared
Morozova, Svetlana
1 / 3 shared
Early, Julia T.
1 / 3 shared
Reineke, Theresa M.
1 / 14 shared
Chart of publication period
2022
2019

Co-Authors (by relevance)

  • Weigand, Steven
  • Bates, Frank S.
  • Solomon, Lucy Liberman
  • Edmund, Jerrick
  • Ertem, S. Piril
  • Morozova, Svetlana
  • Early, Julia T.
  • Reineke, Theresa M.
OrganizationsLocationPeople

article

Properties of Chemically Cross-Linked Methylcellulose Gels

  • Ertem, S. Piril
  • Morozova, Svetlana
  • Coughlin, Mckenzie L.
  • Early, Julia T.
  • Bates, Frank S.
  • Reineke, Theresa M.
Abstract

<p>Methylcellulose (MC) is widely used as a rheology modifier because, upon heating in aqueous solutions, MC reversibly self-assembles into ∼7-10 nm radius fibrils that percolate into a network, resulting in physical gelation. Here, we have chemically cross-linked both MC solutions at room temperature and MC physical fibril gels at 80 °C and compared the swelling and shear modulus properties of both materials. To achieve this, hydroxyl moieties on MC (M<sub>w</sub> ≈ 150 kDa) were substituted with allyl groups, with a degree of substitution of about one pendant carbon-carbon double bond per nine anhydroglucose repeat units. The allyl groups undergo cross-linking in the presence of a photoinitiator and UV light. Chemically cross-linking MC fibril gels ("xfib-MC") at 80 °C results in opaque solid materials and locks in the fibril structure, which persists even on cooling back to room temperature. From small-angle X-ray scattering analysis, the fibril radius is larger at room temperature ∼20 nm and decreases to ∼10 nm at 80 °C. While the fibrils themselves shrink upon heating, the total volume change of xfib-MC gels is minimal. The dynamic shear modulus G′ increases modestly with increasing temperature despite the lack of volume change, and the volume fraction scaling of the modulus is consistent with previous results for fibril gels. On the other hand, chemically cross-linking MC solutions ("xsol-MC") at room temperature leads to clear, solid hydrogels, which no longer form fibrils upon heating. Instead, swelling measurements show that the xsol-MC gels shrink by an order of magnitude in volume when the temperature is increased from 25 to 80 °C. The equilibrium polymer volume fraction, φ<sub>e</sub>, and G′ are consistent with established theories for cross-linked polymer chains. We conclude that the origin of elasticity at 80 °C for the two solid materials is totally different and highly tunable. For xsol-MC gels, the modulus arises from conformational entropy of the chains, and for xfib-MC gels, the modulus is attributed to the bending modulus of the individual fibrils.</p>

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • elasticity
  • X-ray scattering
  • gelation