People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Buchard, Antoine
University of York
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Variations around the presence and position of sulfur in sugar-derived cyclic monomers: influence on polymerisation thermodynamics, polymer sequence and thermal propertiescitations
- 2023Chemical Recycling of Commercial Poly(l-lactic acid) to l-Lactide Using a High-Performance Sn(II)/Alcohol Catalyst Systemcitations
- 2023A molecular dynamics approach to modelling oxygen diffusion in PLA and PLA clay nanocompositescitations
- 2020Polymers from sugars and unsaturated fatty acids: ADMET polymerisation of monomers derived from D-xylose, D-mannose and castor oilcitations
- 2019Divergent Catalytic Strategies for the Cis/Trans Stereoselective Ring-Opening Polymerization of a Dual Cyclic Carbonate/Olefin Monomercitations
- 2019Copolymerization of Cyclic Phosphonate and Lactide: Synthetic Strategies toward Control of Amphiphilic Microstructurecitations
- 2018Bipyrrolidine salan alkoxide complexes of lanthanides: synthesis, characterisation, activity in the polymerisation of lactide and mechanistic investigation by DOSY NMRcitations
- 2017Di-Zinc Aryl Complexescitations
- 2017Polymers from sugars and CO2citations
- 2017Di-Zinc Aryl Complexes:CO2 Insertions and Applications in Polymerization Catalysiscitations
- 2014Preparation of stereoregular isotactic poly(mandelic acid) through organocatalytic ring-opening polymerization of a cyclic O-carboxyanhydridecitations
- 2012Recent developments in catalytic activation of renewable resources for polymer synthesiscitations
- 2012Phosphasalen yttrium complexes: Highly active and stereoselective initiators for lactide polymerizationcitations
- 2012Experimental and computational investigation of the mechanism of carbon dioxide/cyclohexene oxide copolymerization using a dizinc catalystcitations
- 2010Iminophosphorane neodymium(III) complexes as efficient initiators for lactide polymerizationcitations
Places of action
Organizations | Location | People |
---|
article
Copolymerization of Cyclic Phosphonate and Lactide: Synthetic Strategies toward Control of Amphiphilic Microstructure
Abstract
Controlling the microstructure of polymers through chemical reactivity is key to control the material properties of synthetic polymers. Herein we investigate the ring-opening copolymerization of a mixture of lactide and 2-ethyl-2-oxo-1,3,2-dioxaphospholane, promoted by an aluminum pyrrolidine monophenolate complex or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). This monomer mixture provides fast access to amphiphilic copolymers. The reaction conditions control the copolymer microstructure, which has been determined via a combination of 1 H and 31 P NMR spectroscopy. The choice of initiator has a profound impact: both initiators produce tapered block copolymers but with reverse monomer selectivity. While the aluminum initiator favors the cyclic phosphonate monomer, DBU favors lactide polymerization. Moreover, a sequential control of temperature facilitates the preparation of block copolymers in one pot. Thermal properties measured by TGA and DSC correlate to copolymer architectures. This methodology is the first report of copolymerization between cyclic phosphonates and lactide and opens the possibility to tune the thermal properties, solubility, and degradation rates of the resulting materials.