Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fytas, George

  • Google
  • 19
  • 88
  • 364

Max Planck Institute for Polymer Research

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (19/19 displayed)

  • 2023Size-dependent nanoscale soldering of polystyrene colloidal crystals by supercritical fluids6citations
  • 2022Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites14citations
  • 2022Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites14citations
  • 2021Internal Microstructure Dictates Interactions of Polymer-grafted Nanoparticles in Solution7citations
  • 2021Optomechanic Coupling in Ag Polymer Nanocomposite Films14citations
  • 2021Direct visualization and characterization of interfacially adsorbed polymer atop nanoparticles and within nanocomposites27citations
  • 2020Harnessing polymer grafting to control the shape of plasmonic nanoparticles9citations
  • 2020Ultrathin polydopamine films with phospholipid nanodiscs containing a glycophorin a domain54citations
  • 2020Frequency-domain study of nonthermal gigahertz phonons reveals Fano coupling to charge carriers12citations
  • 2020Ultrathin Polydopamine Films with Phospholipid Nanodiscs Containing a Glycophorin A Domain54citations
  • 2018Propagation of elastic waves in a one-dimensional high aspect ratio nanoridge phononic crystal phononic crystal4citations
  • 2018Robustness of elastic properties in polymer nanocomposite films examined over the full volume fraction range23citations
  • 2018Well-defined metal-polymer nanocomposites: The interplay of structure, thermoplasmonics, and elastic mechanical properties12citations
  • 2018Direct observation of polymer surface mobility via nanoparticle vibrations45citations
  • 2018Propagation of Elastic Waves in a One-Dimensional High Aspect Ratio Nanoridge Phononic Crystal4citations
  • 2018Well-defined metal-polymer nanocomposites : the interplay of structure, thermoplasmonics, and elastic mechanical properties12citations
  • 2018Ultrathin Shell Layers Dramatically Influence Polymer Nanoparticle Surface Mobility14citations
  • 2014Surface asymmetry of coated spherical nanoparticles33citations
  • 2011Resonance enhanced dynamic light scattering6citations

Places of action

Chart of shared publication
Gapinski, Jacek
1 / 6 shared
Butt, Hans-Juergen
1 / 2 shared
Babacic, Visnja
1 / 5 shared
Varghese, Jeena
1 / 1 shared
Mohammadi, Reza
1 / 13 shared
Pochylski, Mikołaj
1 / 5 shared
Vogel, Nicolas
1 / 13 shared
Graczykowski, Bartlomiej
8 / 12 shared
Wang, Yuchen
1 / 1 shared
Noual, Adnane
3 / 5 shared
Djafari-Rouhani, Bahram
5 / 18 shared
Yang, Shu
1 / 5 shared
Vasileiadis, Thomas
3 / 7 shared
Kamble, Samruddhi
1 / 1 shared
Bockstaller, Michael R.
1 / 3 shared
Vlassopoulos, Dimitris
1 / 24 shared
Parisi, Daniele
1 / 24 shared
Gury, Leo
1 / 1 shared
Abdullah, Ayesha
1 / 1 shared
Zhang, Jianan
1 / 1 shared
Matyjaszewski, Krzysztof
1 / 18 shared
Lee, Jaejun
1 / 2 shared
Kang, Eunsoo
3 / 3 shared
Maji, Tanmoy
2 / 2 shared
Gkikas, Manos
2 / 2 shared
Randazzo, Katelyn
1 / 1 shared
Zuo, Biao
1 / 1 shared
Priestley, Rodney D.
3 / 5 shared
Cangialosi, Daniele
1 / 25 shared
Bartkiewicz, Malgorzata
1 / 1 shared
Lévêque, Gaëtan
2 / 9 shared
Yan, Liting
1 / 1 shared
Zhou, Ying
1 / 5 shared
Rosenau, Frank
2 / 5 shared
Flaig, Carolin
2 / 2 shared
Weil, Tanja
2 / 5 shared
Szelwicka, Jolanta
2 / 3 shared
Marchesi Dalvise, Tommaso
1 / 2 shared
Kubiczek, Dennis
2 / 2 shared
Wunderlich, Katrin
2 / 2 shared
Veith, Lothar
2 / 4 shared
Hueske, Lisa
2 / 2 shared
Harvey, Sean
2 / 3 shared
Ruggeri, Francesco S.
1 / 1 shared
Knowles, Tuomas P. J.
2 / 6 shared
Gottschalk, Kaye.
1 / 1 shared
Port, Fabian
2 / 2 shared
Zhang, Heng
1 / 15 shared
Wang, Hai
1 / 5 shared
Bonn, Mischa
1 / 15 shared
Ruggeri, Francesco Simone
1 / 5 shared
Dalvise, Tommaso Marchesi
1 / 2 shared
Gottschalk, Kay E.
1 / 1 shared
El Boudouti, El Houssaine
1 / 3 shared
Pennec, Yan
2 / 7 shared
Gueddida, Abdellatif
2 / 4 shared
Belliard, Laurent
1 / 18 shared
Graczykowski, Bartłomiej
4 / 11 shared
Rolle, K.
1 / 1 shared
Tremel, Wolfgang
1 / 33 shared
Alonso-Redondo, Elena
1 / 1 shared
Retsch, Markus
2 / 10 shared
Wang, Zuyuan
2 / 3 shared
Hummel, Patrick
2 / 2 shared
Rosenfeldt, Sabine
2 / 13 shared
Reig, David Saleta
1 / 2 shared
Montagna, Maurizio
1 / 2 shared
Cang, Yu
1 / 1 shared
Furst, Eric M.
2 / 3 shared
Kim, Hojin
2 / 2 shared
Secchi, Maria
1 / 7 shared
Boudouti, El Houssaine El
1 / 3 shared
Rouhani, Bahram Djafari
1 / 1 shared
Saleta Reig, David
1 / 7 shared
Jonas, Ulrich
1 / 8 shared
Christie, Dane
1 / 1 shared
Gray, Laura A. G.
1 / 1 shared
Koch, Amélie H. R.
1 / 1 shared
Landfester, Katharina
1 / 11 shared
Sönnichsen, Carsten
1 / 1 shared
Harms, Sebastian
1 / 1 shared
Bernhardt, Max
1 / 1 shared
Jaskiewicz, Karmena
1 / 1 shared
Henkel, Andreas
1 / 1 shared
Menges, Bernhard
1 / 4 shared
Butt, Hans-Jrgen
1 / 1 shared
Steffen, Werner
1 / 1 shared
Plum, Markus A.
1 / 1 shared
Chart of publication period
2023
2022
2021
2020
2018
2014
2011

Co-Authors (by relevance)

  • Gapinski, Jacek
  • Butt, Hans-Juergen
  • Babacic, Visnja
  • Varghese, Jeena
  • Mohammadi, Reza
  • Pochylski, Mikołaj
  • Vogel, Nicolas
  • Graczykowski, Bartlomiej
  • Wang, Yuchen
  • Noual, Adnane
  • Djafari-Rouhani, Bahram
  • Yang, Shu
  • Vasileiadis, Thomas
  • Kamble, Samruddhi
  • Bockstaller, Michael R.
  • Vlassopoulos, Dimitris
  • Parisi, Daniele
  • Gury, Leo
  • Abdullah, Ayesha
  • Zhang, Jianan
  • Matyjaszewski, Krzysztof
  • Lee, Jaejun
  • Kang, Eunsoo
  • Maji, Tanmoy
  • Gkikas, Manos
  • Randazzo, Katelyn
  • Zuo, Biao
  • Priestley, Rodney D.
  • Cangialosi, Daniele
  • Bartkiewicz, Malgorzata
  • Lévêque, Gaëtan
  • Yan, Liting
  • Zhou, Ying
  • Rosenau, Frank
  • Flaig, Carolin
  • Weil, Tanja
  • Szelwicka, Jolanta
  • Marchesi Dalvise, Tommaso
  • Kubiczek, Dennis
  • Wunderlich, Katrin
  • Veith, Lothar
  • Hueske, Lisa
  • Harvey, Sean
  • Ruggeri, Francesco S.
  • Knowles, Tuomas P. J.
  • Gottschalk, Kaye.
  • Port, Fabian
  • Zhang, Heng
  • Wang, Hai
  • Bonn, Mischa
  • Ruggeri, Francesco Simone
  • Dalvise, Tommaso Marchesi
  • Gottschalk, Kay E.
  • El Boudouti, El Houssaine
  • Pennec, Yan
  • Gueddida, Abdellatif
  • Belliard, Laurent
  • Graczykowski, Bartłomiej
  • Rolle, K.
  • Tremel, Wolfgang
  • Alonso-Redondo, Elena
  • Retsch, Markus
  • Wang, Zuyuan
  • Hummel, Patrick
  • Rosenfeldt, Sabine
  • Reig, David Saleta
  • Montagna, Maurizio
  • Cang, Yu
  • Furst, Eric M.
  • Kim, Hojin
  • Secchi, Maria
  • Boudouti, El Houssaine El
  • Rouhani, Bahram Djafari
  • Saleta Reig, David
  • Jonas, Ulrich
  • Christie, Dane
  • Gray, Laura A. G.
  • Koch, Amélie H. R.
  • Landfester, Katharina
  • Sönnichsen, Carsten
  • Harms, Sebastian
  • Bernhardt, Max
  • Jaskiewicz, Karmena
  • Henkel, Andreas
  • Menges, Bernhard
  • Butt, Hans-Jrgen
  • Steffen, Werner
  • Plum, Markus A.
OrganizationsLocationPeople

article

Ultrathin Shell Layers Dramatically Influence Polymer Nanoparticle Surface Mobility

  • Fytas, George
  • Jonas, Ulrich
  • Priestley, Rodney D.
  • Graczykowski, Bartłomiej
  • Kang, Eunsoo
  • Christie, Dane
  • Furst, Eric M.
  • Kim, Hojin
  • Gray, Laura A. G.
Abstract

<p>Advances in nanoparticle synthesis, self-assembly, and surface coating or patterning have enabled a diverse array of applications ranging from photonic and phononic crystal fabrication to drug delivery vehicles. One of the key obstacles restricting its potential is structural and thermal stability. The presence of a glass transition can facilitate deformation within nanoparticles, thus resulting in a significant alteration in structure and performance. Recently, we detected a glassy-state transition within individual polystyrene nanoparticles and related its origin to the presence of a surface layer with enhanced dynamics compared to the bulk. The presence of this mobile layer could have a dramatic impact on the thermal stability of polymer nanoparticles. Here, we demonstrate how the addition of a shell layer, as thin as a single polymer chain, atop the nanoparticles could completely eliminate any evidence of enhanced mobility at the surface of polystyrene nanoparticles. The ultrathin polymer shell layers were placed atop the nanoparticles via two approaches: (i) covalent bonding or (ii) electrostatic interactions. The temperature dependence of the particle vibrational spectrum, as recorded by Brillouin light scattering, was used to probe the surface mobility of nanoparticles with and without a shell layer. Beyond suppression of the surface mobility, the presence of the ultrathin polymer shell layers impacted the nanoparticle glass transition temperature and shear modulus, albeit to a lesser extent. The implication of this work is that the core-shell architecture allows for tailoring of the nanoparticle elasticity, surface softening, and glass transition temperature.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • polymer
  • mobility
  • glass
  • glass
  • glass transition temperature
  • elasticity
  • self-assembly
  • light scattering