Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Seddon, Annela M.

  • Google
  • 6
  • 30
  • 142

University of Bristol

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022Scale-Invariance in Miniature Coarse-Grained Red Blood Cells by Fluctuation Analysis1citations
  • 2019Bénard-Marangoni Dendrites upon Evaporation of a Reactive ZnO Nanofluid Droplet6citations
  • 2018Structure of the Crystalline Core of Fiber-like Polythiophene Block Copolymer Micelles25citations
  • 2015Self-assembly of a functional oligo(aniline)-based amphiphile into helical conductive nanowires56citations
  • 2014Experimental confirmation of transformation pathways between inverse double diamond and gyroid cubic phases24citations
  • 2007Bio-functional mesolamellar nanocomposites based on inorganic/polymer intercalation in purple membrane (bacteriorhodopsin) films30citations

Places of action

Chart of shared publication
Appshaw, Paul
1 / 1 shared
Hanna, Simon
1 / 2 shared
Wasik, Patryk
1 / 3 shared
Wu, Hua
1 / 5 shared
Briscoe, Wuge H.
1 / 27 shared
Hayward, Dominic W.
1 / 2 shared
Finnegan, John R.
1 / 2 shared
Magdysyuk, Oxana
1 / 2 shared
Gould, Oliver E. C.
1 / 4 shared
Richardson, Robert M.
2 / 17 shared
Lunn, David J.
1 / 3 shared
Manners, Ian
1 / 16 shared
Whittell, George R.
1 / 7 shared
Zhang, Xi
1 / 18 shared
Faul, Charl F. J.
1 / 12 shared
Broemmel, Feli
1 / 1 shared
Harniman, Robert L.
1 / 12 shared
Haataja, Johannes S.
1 / 2 shared
Fey, Natalie
1 / 3 shared
Bell, O. A.
1 / 1 shared
Ikkala, Olli
1 / 33 shared
Wu, Guanglu
1 / 1 shared
Plivelic, Tomás S.
1 / 10 shared
Hallett, Je
1 / 3 shared
Beddoes, Charlotte
1 / 1 shared
Squires, Adam M.
1 / 5 shared
Mann, Stephen
1 / 25 shared
Bromley, Keith M.
1 / 2 shared
Booth, Paula Jane
1 / 1 shared
Patil, Avinash J.
1 / 12 shared
Chart of publication period
2022
2019
2018
2015
2014
2007

Co-Authors (by relevance)

  • Appshaw, Paul
  • Hanna, Simon
  • Wasik, Patryk
  • Wu, Hua
  • Briscoe, Wuge H.
  • Hayward, Dominic W.
  • Finnegan, John R.
  • Magdysyuk, Oxana
  • Gould, Oliver E. C.
  • Richardson, Robert M.
  • Lunn, David J.
  • Manners, Ian
  • Whittell, George R.
  • Zhang, Xi
  • Faul, Charl F. J.
  • Broemmel, Feli
  • Harniman, Robert L.
  • Haataja, Johannes S.
  • Fey, Natalie
  • Bell, O. A.
  • Ikkala, Olli
  • Wu, Guanglu
  • Plivelic, Tomás S.
  • Hallett, Je
  • Beddoes, Charlotte
  • Squires, Adam M.
  • Mann, Stephen
  • Bromley, Keith M.
  • Booth, Paula Jane
  • Patil, Avinash J.
OrganizationsLocationPeople

article

Structure of the Crystalline Core of Fiber-like Polythiophene Block Copolymer Micelles

  • Hayward, Dominic W.
  • Finnegan, John R.
  • Magdysyuk, Oxana
  • Gould, Oliver E. C.
  • Richardson, Robert M.
  • Lunn, David J.
  • Manners, Ian
  • Whittell, George R.
  • Seddon, Annela M.
Abstract

The internal structure and cross-sectional geometry of fiber-like poly(3-hexylthiophene)-based block copolymer micelles has been determined using small- and wide-angle X-ray scattering (SAXS and WAXS, respectively) techniques alongside electron and atomic force microscopies. WAXS of concentrated micellar solutions demonstrated that the block copolymers form crystalline-core micelles in solvents selective for the corona-forming block. Furthermore, by generating macroscopic fibers from micellar solutions, it was possible to align the micelles and discern the type and orientation of the unit cell within the core. Using the unit cell information gained from the wide-angle measurements, in conjunction with the structural insights gained from the microscopy techniques, it was possible to form a complete picture of the cross-sectional geometry of the micelles, whereby the polymer chains lie perpendicular to the long axis of the micelle core and do not undergo chain folding. Finally, this information was used to propose a self-assembly mechanism and to construct and validate a model for the small-angle scattering data, revealing the inherent flexibility of the micelles.

Topics
  • forming
  • copolymer
  • block copolymer
  • small angle x-ray scattering
  • self-assembly
  • wide-angle X-ray scattering
  • microscopy