Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cola, Emanuela Di

  • Google
  • 1
  • 13
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Mechanistic Insights into Polyion Complex Associations11citations

Places of action

Chart of shared publication
Violleau, Frédéric
1 / 4 shared
Mingotaud, Christophe
1 / 10 shared
Gineste, Stéphane
1 / 8 shared
Till, Ugo
1 / 4 shared
Marty, Michael
1 / 2 shared
Mingotaud, Anne-Françoise
1 / 12 shared
Luchinat, Ugo
1 / 2 shared
Marty, Jean-Daniel
1 / 10 shared
Parigi, Ugo
1 / 2 shared
Lonetti, Barbara
1 / 7 shared
Balor, Stephanie
1 / 2 shared
Berti, Ugo
1 / 2 shared
Amouroux, Baptiste
1 / 3 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Violleau, Frédéric
  • Mingotaud, Christophe
  • Gineste, Stéphane
  • Till, Ugo
  • Marty, Michael
  • Mingotaud, Anne-Françoise
  • Luchinat, Ugo
  • Marty, Jean-Daniel
  • Parigi, Ugo
  • Lonetti, Barbara
  • Balor, Stephanie
  • Berti, Ugo
  • Amouroux, Baptiste
OrganizationsLocationPeople

article

Mechanistic Insights into Polyion Complex Associations

  • Violleau, Frédéric
  • Mingotaud, Christophe
  • Gineste, Stéphane
  • Cola, Emanuela Di
  • Till, Ugo
  • Marty, Michael
  • Mingotaud, Anne-Françoise
  • Luchinat, Ugo
  • Marty, Jean-Daniel
  • Parigi, Ugo
  • Lonetti, Barbara
  • Balor, Stephanie
  • Berti, Ugo
  • Amouroux, Baptiste
Abstract

Polyion complex (PIC) micelles formed from the electrostatic interaction between oppositely charged polymers have been studied for their promising applications in the biomedical field as drug carriers or vectors for gene delivery. In spite of their asset of possible high drug loading, their formation process remains poorly studied. In this work, we investigate the properties of a series of PICs based on poly(ethylene oxide-b-acrylic acid) (PEO–PAA)/dendrigraft poly(L-lysine) (DGL3), using PEO–PAA with different compositions and average molecular weights. For each PEO–PAA/DGL3 pair, the complexes were characterized as a function of the ratios between acid and amine moieties combining different techniques: dynamic light scattering (DLS), flow field-flow fractionation (FlFFF), small-angle X-ray scattering (SAXS), and relaxometry. The coupling of batch techniques, i.e., DLS, SAXS, and relaxometry, together with a soft separation technique like FlFFF enabled a finer analysis to elucidate subtle details of the association process and of the polydispersity of the complexes. We show that the formation of PICs is more complex than previously described. In particular, we demonstrate that PICs with stoichiometry 1:1 may form at low ratios provided that the acidic block is long enough to neutralize the cationic dendrigraft with few polymer chains. Moreover, in such conditions, PICs with stoichiometry 1:1 often coexist with free dendritic polymers and other associated complex species.

Topics
  • impedance spectroscopy
  • polymer
  • molecular weight
  • amine
  • polydispersity
  • small angle x-ray scattering
  • dynamic light scattering
  • field-flow fractionation