Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fortman, David J.

  • Google
  • 3
  • 4
  • 1146

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Mechanistic Study of Stress Relaxation in Urethane-Containing Polymer Networks128citations
  • 2018Reprocessable Acid-Degradable Polycarbonate Vitrimers318citations
  • 2015Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers700citations

Places of action

Chart of shared publication
Hoe, Guilhem X. De
2 / 3 shared
Brutman, Jacob P.
2 / 3 shared
Dichtel, William R.
3 / 5 shared
Snyder, Rachel L.
1 / 3 shared
Chart of publication period
2019
2018
2015

Co-Authors (by relevance)

  • Hoe, Guilhem X. De
  • Brutman, Jacob P.
  • Dichtel, William R.
  • Snyder, Rachel L.
OrganizationsLocationPeople

article

Reprocessable Acid-Degradable Polycarbonate Vitrimers

  • Hoe, Guilhem X. De
  • Fortman, David J.
  • Snyder, Rachel L.
  • Dichtel, William R.
Abstract

<p>Vitrimers are cross-linked polymer networks containing linkages that undergo thermally activated, associative exchange reactions, such that the cross-link density and overall network connectivity are preserved. Polycarbonates are industrially relevant polymers that, to our knowledge, have not yet been explored as vitrimers. We developed hydroxyl-functionalized polycarbonate networks that undergo transcarbonation exchange reactions at elevated temperatures in the presence of catalytic Ti(IV) alkoxides. The rate of transcarbonation within the networks, estimated through stress relaxation experiments, was tuned by adjusting the catalyst loading or hydroxyl group concentration in the networks. The polymer networks exhibit recovery of their tensile strength and plateau storage modulus (71-133%) after reprocessing. In addition to being reprocessable, the networks were hydrolyzed and decarboxylated in aqueous acid to recover 80 wt % of the precursor to the bifunctional cyclic carbonate monomer. These observations demonstrate that PC vitrimers are a novel class of strong, repairable polymers with more facile end-of-life degradation compared to other vitrimers and conventional thermosets. These characteristics, along with the high likelihood of deriving their monomers from bio-based sources, make PC vitrimers outstanding candidates for sustainable manufacture and use.</p>

Topics
  • density
  • experiment
  • strength
  • tensile strength
  • thermoset