People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kroon, Renee
Linköping University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Stretchable Tissue‐Like Gold Nanowire Composites with Long‐Term Stability for Neural Interfacescitations
- 2024Stretchable Tissue-Like Gold Nanowire Composites with Long-Term Stability for Neural Interfaces.
- 2024Impact of Oligoether Side-Chain Length on the Thermoelectric Properties of a Polar Polythiophenecitations
- 2023Mechanically Adaptive Mixed Ionic-Electronic Conductors Based on a Polar Polythiophene Reinforced with Cellulose Nanofibrilscitations
- 2023Impact of oxidation-induced ordering on the electrical and mechanical properties of a polythiophene co-processed with bistriflimidic acidcitations
- 2023Impact of Oligoether Side-Chain Length on the Thermoelectric Properties of a Polar Polythiophenecitations
- 2022Tuning of the elastic modulus of a soft polythiophene through molecular dopingcitations
- 2022Visualisation of individual dopants in a conjugated polymer : sub-nanometre 3D spatial distribution and correlation with electrical propertiescitations
- 2022Influence of Molecular Weight on the Organic Electrochemical Transistor Performance of Ladder-Type Conjugated Polymerscitations
- 2022Organogels from Diketopyrrolopyrrole Copolymer Ionene/Polythiophene Blends Exhibit Ground-State Single Electron Transfer in the Solid Statecitations
- 2022Double Doping of a Low-Ionization-Energy Polythiophene with a Molybdenum Dithiolene Complexcitations
- 2021Toughening of a Soft Polar Polythiophene through Copolymerization with Hard Urethane Segmentscitations
- 2020Water/Ethanol Soluble p-Type Conjugated Polymers for the Use in Organic Photovoltaicscitations
- 2019Thermally Activated in Situ Doping Enables Solid-State Processing of Conducting Polymers.citations
- 2019Probing the Relationship between Molecular Structures, Thermal Transitions, and Morphology in Polymer Semiconductors Using a Woven Glass-Mesh-Based DMTA Techniquecitations
- 2019Enhanced Thermoelectric Power Factor of Tensile Drawn Poly(3-hexylthiophene)citations
- 2018Environmentally friendly preparation of nanoparticles for organic photovoltaicscitations
- 2018Environmentally friendly preparation of nanoparticles for organic photovoltaicscitations
- 2018Highly stable doping of a polar polythiophene through co-processing with sulfonic acids and bistriflimidecitations
- 2017Enhanced Electrical Conductivity of Molecularly p-Doped Poly(3-hexylthiophene) through Understanding the Correlation with Solid-State Ordercitations
- 2017Polar Side Chains Enhance Processability, Electrical Conductivity, and Thermal Stability of a Molecularly p-Doped Polythiophenecitations
- 2017Optimization of the power conversion efficiency in high bandgap pyridopyridinedithiophene-based conjugated polymers for organic photovoltaics by the random terpolymer approachcitations
- 2017Enhanced Electrical Conductivity of Molecularly p-Doped Poly(3-hexylthiophene) through Understanding the Correlation with Solid-State Order.citations
- 2017Bulk Doping of Millimeter-Thick Conjugated Polymer Foams for Plastic Thermoelectricscitations
- 2016Thermoelectric plastics: from design to synthesis, processing and structure–property relationshipscitations
- 2015Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cellscitations
- 2015Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cellscitations
- 2012Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cellscitations
Places of action
Organizations | Location | People |
---|
article
Enhanced Electrical Conductivity of Molecularly p-Doped Poly(3-hexylthiophene) through Understanding the Correlation with Solid-State Order.
Abstract
Molecular p-doping of the conjugated polymer poly(3-hexylthiophene) (P3HT) with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) is a widely studied model system. Underlying structure-property relationships are poorly understood because processing and doping are often carried out simultaneously. Here, we exploit doping from the vapor phase, which allows us to disentangle the influence of processing and doping. Through this approach, we are able to establish how the electrical conductivity varies with regard to a series of predefined structural parameters. We demonstrate that improving the degree of solid-state order, which we control through the choice of processing solvent and regioregularity, strongly increases the electrical conductivity. As a result, we achieve a value of up to 12.7 S cm-1 for P3HT:F4TCNQ. We determine the F4TCNQ anion concentration and find that the number of (bound + mobile) charge carriers of about 10-4 mol cm-3 is not influenced by the degree of solid-state order. Thus, the observed increase in electrical conductivity by almost 2 orders of magnitude can be attributed to an increase in charge-carrier mobility to more than 10-1 cm2 V-1 s-1. Surprisingly, in contrast to charge transport in undoped P3HT, we find that the molecular weight of the polymer does not strongly influence the electrical conductivity, which highlights the need for studies that elucidate structure-property relationships of strongly doped conjugated polymers.