People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sharma, Anirudh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022Methods of preparation of metal-doped and hybrid tungsten oxide nanoparticles for anticancer, antibacterial, and biosensing applicationscitations
- 2022Backbone-driven host-dopant miscibility modulates molecular doping in NDI conjugated polymerscitations
- 2022Backbone-driven host-dopant miscibility modulates molecular doping in NDI conjugated polymerscitations
- 2021Temperature-modulated doping at polymer semiconductor interfacescitations
- 2020p-Doping of a Hole Transport Material via a Poly(ionic liquid) for over 20% Efficiency and Hysteresis-Free Perovskite Solar Cellscitations
- 2020Water/Ethanol Soluble p-Type Conjugated Polymers for the Use in Organic Photovoltaicscitations
- 2019Probing the Relationship between Molecular Structures, Thermal Transitions, and Morphology in Polymer Semiconductors Using a Woven Glass-Mesh-Based DMTA Techniquecitations
- 2019Orange to green switching anthraquinone-based electrochromic materialcitations
- 2019Building intermixed donor-acceptor architectures for water-processable organic photovoltaicscitations
- 2018High Performance All-Polymer Photodetector Comprising a Donor–Acceptor–Acceptor Structured Indacenodithiophene–Bithieno[3,4- c ]Pyrroletetrone Copolymercitations
- 2018Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applicationscitations
- 2018Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applications
- 2018Environmentally friendly preparation of nanoparticles for organic photovoltaicscitations
- 2018Environmentally friendly preparation of nanoparticles for organic photovoltaicscitations
- 2018Insights into the Oxidant/Polymer Interfacial Growth of Vapor Phase Polymerized PEDOT Thin Filmscitations
- 2018High performance all-polymer photodetector comprising a donor-Acceptor-Acceptor structured indacenodithiophene-bithieno[3,4-c] pyrroletetrone copolymercitations
- 2017Optimization of the power conversion efficiency in high bandgap pyridopyridinedithiophene-based conjugated polymers for organic photovoltaics by the random terpolymer approachcitations
- 2017Unravelling the Thermomechanical Properties of Bulk Heterojunction Blends in Polymer Solar Cellscitations
- 2015Raman spectroscopy study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the thermal annealing pathwaycitations
- 2015Inducing cells to disperse nickel nanowires via integrin-mediated responsescitations
- 2011New insights into the structure of PAMAM dendrimer/gold nanoparticle nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Unravelling the Thermomechanical Properties of Bulk Heterojunction Blends in Polymer Solar Cells
Abstract
<p>Glass transition temperature is a critical parameter for achieving favorable and thermally stable bulk heterojunction morphology as it determines the kinetics of molecular organization of polymeric semiconducting materials. This study presents a sensitive method of precisely determining the glass transition temperature (T<sub>g</sub>) of conjugated polymers and polymer-PCBM blends using dynamic mechanical thermal analysis (DMTA). The method presented here is very versatile in which polymer or polymer-molecule films are reinforced using a woven glass fiber and utilizes only 5-10 mg of the material. This makes the method superior to differential scanning calorimetry (DSC) for determining the thermal properties of conjugated polymers. The effects of PCBM loading, solvents, and additive on the T<sub>g</sub> of polymer-PCBM blends and on the miscibility of different phases are investigated using the novel DMTA method. For the P3HT:PC<sub>61</sub>BM system, two different thermal transitions were found corresponding to P3HT-rich and PCBM-rich phases when cast using CHCl<sub>3</sub>, while chlorobenzene was found to result in a single T<sub>g</sub> for the blend which was between those of the pure components, indicating greater miscibility when cast from chlorobenzene. On the other hand, miscibility of PCBM in TQ1 was found to be relatively low, and two thermal transitions were found for all TQ1:PCBM blends. The total PCBM content or the solvent used was found to have little influence on the resultant PCBM miscibility in TQ1. T<sub>g</sub> of a range of other polymers as measured using DMTA is also reported to prove the versatility of this technique.</p>