Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Artar, Müge

  • Google
  • 1
  • 5
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Self-assembly of hydrogen-bonding gradient copolymers28citations

Places of action

Chart of shared publication
Palmans, Ara Anja
1 / 36 shared
Sawamoto, M.
1 / 2 shared
Ogura, Y.
1 / 2 shared
Terashima, T.
1 / 4 shared
Meijer, Ew Bert
1 / 48 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Palmans, Ara Anja
  • Sawamoto, M.
  • Ogura, Y.
  • Terashima, T.
  • Meijer, Ew Bert
OrganizationsLocationPeople

article

Self-assembly of hydrogen-bonding gradient copolymers

  • Palmans, Ara Anja
  • Sawamoto, M.
  • Artar, Müge
  • Ogura, Y.
  • Terashima, T.
  • Meijer, Ew Bert
Abstract

<p>Chiral 1,3,5-tricarboxamide (BTA)-functionalized copolymers with gradient, bidirectional gradient, and random sequence distributions were synthesized via tandem living radical polymerization (LRP) with in situ monomer transesterification to investigate the effects of the BTA sequence on self-folding/aggregation properties in organic media. Here, 2-ethylhexyl methacrylate (EHMA) as a starting monomer was polymerized with a ruthenium catalytic system in the presence of a chiral BTA-bearing alcohol (BTA-OH) and Ti(Oi-Pr)<sub>4</sub>. By tuning the concentration and time of addition of the Ti catalyst, the transesterification rate of EHMA into a chiral BTA-functionalized methacrylate (BTAMA) was synchronized with LRP to produce EHMA/BTAMA gradient or bidirectional gradient copolymers. In contrast, faster transesterification than LRP gave the corresponding random copolymer. Circular dichroism spectroscopy and dynamic light scattering performed on solutions of all BTA-functionalized copolymers indicated that the chiral BTA pendants self-assemble helically via hydrogen-bonding interaction in 1,2-dichloroethane, methylcyclohexane (MCH), and their mixtures to form single-chain or multichain polymeric nanoparticles. The temperature-dependent self-assembly behavior of the BTA pendants was virtually independent of the sequence distribution, whereas the size of the resultant nanoparticles depended on the sequence as follows: random &lt; gradient &lt; bidirectional gradient in MCH.</p>

Topics
  • nanoparticle
  • Hydrogen
  • random
  • copolymer
  • alcohol
  • self-assembly
  • dynamic light scattering
  • Ruthenium
  • random copolymer
  • gradient copolymer
  • circular dichroism spectroscopy