People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chen, Qile P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Molecular Simulation of Olefin Oligomer Blend Phase Behavior
Abstract
<p>Configurational-bias Monte Carlo simulations in the Gibbs ensemble are used to study the thermodynamic and structural properties associated with the miscibility of binary olefin oligomer mixtures representing poly(ethylene-alt-propylene), polypropylene, and head-to-head polypropylene. Single-component simulations are performed to compute the cohesive energy densities, Π<sub>CED</sub>, of different oligomers that are often utilized in estimating the miscibilities of compounds in the liquid phase but are not measurable for high-boiling compounds, such as polymers. Extrapolating simulation data for C5 to C36 oligomers allows for determination of the infinite-chain-length Π<sub>CED</sub> values of three polyolefins. The results agree remarkably well with values deduced from small-angle neutron scattering experiments on high-molecular-weight polymers. In addition, the Flory-Huggins χ parameters based on the free energy of mixing for pairs of olefins are calculated directly from simulations of binary mixtures. The binary propylene and head-to-head propylene oligomer blend is found to exhibit stabilized irregular mixing behavior, in agreement with its polymeric counterpart. This chain-length independence of the mixing behavior is interpreted via insights from structural analysis. Our results identify simulations of oligomeric systems as a promising route to predict and understand polymer blend phase behavior.</p>