People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Voets, Ilja
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Freezing-mediated formation of supraproteins using depletion forcescitations
- 2022Switchable Electrostatically Templated Polymerizationcitations
- 2021Single Enzyme Nanoparticles with Improved Biocatalytic Activity through Protein Entrapment in a Surfactant Shellcitations
- 2020Bioinspired Scaffolding by Supramolecular Amines Allows the Formation of One- and Two-Dimensional Silica Superstructurescitations
- 2018Supramolecular block copolymers under thermodynamic controlcitations
- 2015The coil-to-globule transition of single-chain polymeric nanoparticles with a chiral internal secondary structurecitations
- 2014Folding polymers with pendant hydrogen bonding motifs in water : the effect of polymer length and concentration on the shape and size of single-chain polymeric nanoparticlescitations
- 2013Sticky Supramolecular Grafts Stretch Single Polymer Chainscitations
- 2008Synthesis of novel well-defined poly(vinyl acetate)-b-poly(acrylonitrile) and derivatized water-soluble poly(vinyl alcohol)-b-poly(acrylic acid) block copolymers by cobalt-mediated radical polymerizationcitations
Places of action
Organizations | Location | People |
---|
article
The coil-to-globule transition of single-chain polymeric nanoparticles with a chiral internal secondary structure
Abstract
<p>The intramolecular folding of chiral single polymeric chains into single-chain polymeric nanoparticles (SCPNs) via π-stacking was investigated. To this end, hydrophilic polymers grafted with structuring, chiral 3,3′-bis(acylamino)-2,2′-bipyridine-substituted benzene-1,3,5-tricarboxamides (BiPy-BTAs) units were prepared via ring-opening metathesis polymerization (ROMP). A combination of spectroscopic and scattering techniques was employed to obtain a better understanding of the folding behavior and the chiral internal structure of these systems. Circular dichroism spectroscopy showed that the folding of the polymer is highly dependent on the solvent quality and temperature. The folding process in water was fine-tuned via the addition of a good cosolvent (tetrahydrofuran), resulting in an optimal balance between the conformational freedom of the polymer's backbone and the stability of the π-stacked units. Small-angle X-ray scattering (SAXS) experiments showed that the shape of the SCPNs is controlled by the formation of a chiral internal secondary structure.</p>