Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Drongelen, M. Van

  • Google
  • 1
  • 5
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Unusual Melting Behavior in Flow Induced Crystallization of LLDPE22citations

Places of action

Chart of shared publication
Troisi, E. M.
1 / 2 shared
Ma, Z.
1 / 9 shared
Hermida-Merino, D.
1 / 7 shared
Peters, G. W. M.
1 / 30 shared
Portale, Giuseppe, A.
1 / 57 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Troisi, E. M.
  • Ma, Z.
  • Hermida-Merino, D.
  • Peters, G. W. M.
  • Portale, Giuseppe, A.
OrganizationsLocationPeople

article

Unusual Melting Behavior in Flow Induced Crystallization of LLDPE

  • Troisi, E. M.
  • Ma, Z.
  • Hermida-Merino, D.
  • Drongelen, M. Van
  • Peters, G. W. M.
  • Portale, Giuseppe, A.
Abstract

<p>Structure formation during flow, a common phenomenon driving polymer processing, can have a major effect On the rheological behavior of a polymer melt. This can cause large increases of the pressure and thus large changes in thermodynamical properties which, in turn, will strongly influence the structure formation. Consequently, a complex, mutual, self-influencing process, occurring at rather short times,. arises. This process is investigated with combined in situ small-angle X-ray scattering and wide-angle X-ray diffraction at high acquisition frequency (30 Hz) in a piston driven slit flow device using linear low density polyethylene as a model material. A decrease of crystallinity is observed immediately after flow and related to an unusual melting of part of the oriented crystals. The experimental observation is explained in terms of pressure dependency of the undercooling. The undercooling first increases during flow because of the pressure rise and then drops when pressure relaxes to equilibrium values; as a consequence, the critical stable lamellar thickness is not constant in time, although the experiments are conducted in isothermal conditions. A mechanism is proposed and validated using a structural model to fit SAXS data: the increase of undercooling during flow promotes nucleation of gradually thinner lamellae on the pre-existing kebab nucleated from shish cores that relax back to the melt state after depressurization. Our results show that in modeling real-life processes involving combination of flow and high pressures, like injection molding, the effect of pressure on the shear layer formation cannot be neglected.</p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • experiment
  • melt
  • injection molding
  • crystallization
  • crystallinity
  • small angle x-ray scattering
  • lamellae
  • wide-angle X-ray diffraction