Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Menezes, Rafael Natal Lima De

  • Google
  • 1
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Semi-Crystalline and Amorphous Polyesters Derived from Biobased Tri-Aromatic Dicarboxylates and Containing Cleavable Acylhydrazone Units for Short-Loop Chemical Recycling2citations

Places of action

Chart of shared publication
Warlin, Niklas
1 / 9 shared
Jannasch, Patric
1 / 61 shared
Zhang, Baozhong
1 / 14 shared
Valsange, Nitin G.
1 / 4 shared
Rehnberg, Nicola
1 / 17 shared
Mankar, Smita V.
1 / 6 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Warlin, Niklas
  • Jannasch, Patric
  • Zhang, Baozhong
  • Valsange, Nitin G.
  • Rehnberg, Nicola
  • Mankar, Smita V.
OrganizationsLocationPeople

article

Semi-Crystalline and Amorphous Polyesters Derived from Biobased Tri-Aromatic Dicarboxylates and Containing Cleavable Acylhydrazone Units for Short-Loop Chemical Recycling

  • Warlin, Niklas
  • Jannasch, Patric
  • Menezes, Rafael Natal Lima De
  • Zhang, Baozhong
  • Valsange, Nitin G.
  • Rehnberg, Nicola
  • Mankar, Smita V.
Abstract

Recycling polymers by site-specific scission into short-chain oligomers/polymers, followed by recoupling these to form the original polymer presents an energetically more favorable shorter-loop chemical recycling in comparison to recycling into monomers. Here, we present the synthesis and polymerization of triaromatic diesters to prepare polyesters with acylhydrazone units as weak structural links. Two diester monomers were prepared by combining methyl 5-chloromethyl-2-furoate, obtained from 5-chloromethylfurfural (CMF), with potentially biobased hydroquinone and resorcinol, respectively. The two diesters having a central phenyl ring flanked by two furan rings were polymerized with 1,6-hexanediol and 1,4-butanediol, respectively, together with controlled amounts of monofunctional ethyl levulinate to form telechelic ketone-terminated polyesters. Subsequent reactions of these telechelic polyesters with adipic dihydrazide yielded corresponding chain-extended polyesters with increased molecular weights ([η] = 0.29−0.52 dL g<sup>−1</sup>) with acylhydrazone units in the backbone. Thermogravimetric analysis showed a high thermal stability of the polyesters with thermal decomposition only above 275 °C. The polyesters containing the linear hydroquinone units were found to be semicrystalline materials with melting points at 158 and 192 °C, respectively, while those containing the kinked resorcinol units were fully amorphous with glass transition temperatures at 35 and 44 °C, respectively. Initial investigations of the chemical recyclability of the polyesters demonstrated that acylhydrazone units could be selectively cleaved to recover the original telechelic ketone-terminated polyesters, which could again be chain-extended to obtain a recycled polymer with molecular weights and properties very similar to those of the original polymer.<br/>

Topics
  • polymer
  • amorphous
  • glass
  • glass
  • thermogravimetry
  • glass transition temperature
  • molecular weight
  • ketone
  • thermal decomposition
  • semicrystalline