People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Breemen, Lambèrt C. A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024A macroscopic viscoelastic viscoplastic constitutive model for porous polymers under multiaxial loading conditionscitations
- 2024Vezel-geïnduceerde kristallisatie in rekstromingen ; Fiber-induced crystallization in elongational flowscitations
- 2024Fiber-induced crystallization in elongational flowscitations
- 2023Deformation kinetics of single-fiber polypropylene composites:Adhesion improvement at the expense of toughness
- 2023Deformation kinetics of single-fiber polypropylene composites
- 2023Shear-Induced Structure Formation in MAH-g-PP Compatibilized Polypropylenescitations
- 2022In Situ Fabrication, Manipulation, and Mechanical Characterization of Free-Standing Silica Thin Films Using Focused Ion Beam Scanning Electron Microscopycitations
- 2022In Situ Fabrication, Manipulation, and Mechanical Characterization of Free-Standing Silica Thin Films Using Focused Ion Beam Scanning Electron Microscopycitations
- 2022Laser sintering of PA12 particles studied by in-situ optical, thermal and X-ray characterizationcitations
- 2020Polarization modulated infrared spectroscopy:A pragmatic tool for polymer science and engineeringcitations
- 2020Polymer spheres
- 2020Polarization modulated infrared spectroscopycitations
- 2020Transient dynamics of cold-rolled and subsequently thermally rejuvenated atactic-polystyrene using broadband dielectric spectroscopycitations
- 2020Thermally Reversible Diels–Alder Bond-Containing Acrylate Networks Showing Improved Lifetimecitations
- 2020Thermally Reversible Diels–Alder Bond-Containing Acrylate Networks Showing Improved Lifetimecitations
- 2019Predicting embrittlement of polymer glasses using a hydrostatic stress criterioncitations
- 2019Hydrostatic stress as indicator for wear initiation in polymer tribologycitations
- 2019Effect of low-temperature physical aging on the dynamic transitions of atactic polystyrene in the glassy statecitations
- 2019A novel experimental setup for in-situ optical and X-ray imaging of laser sintering of polymer particlescitations
- 2019Temperature dependent two-body abrasive wear of polycarbonate surfacescitations
- 2019Laser sintering of polymer particle pairs studied by in-situ visualizationcitations
- 2018Contact mechanics of high-density polyethylene: Effect of pre-stretch on the frictional response and the onset of wearcitations
- 2018Thin film mechanical characterization of UV-curing acrylate systemscitations
- 2018Contact mechanics of polyolefins: effect of pre-stretch on the frictional response and the onset of wear
- 2017Experimental setup for in situ visualization studies of laser sintering of polymer particles
- 2011Criteria to predict the embrittlement of polycarbonatecitations
- 2011Extending the EGP constitutive model for polymer glasses to multiple relaxation timescitations
- 2009Predicting the long-term mechanical performance of polycarbonate from thermal history during injection moldingcitations
- 2009Predicting the yield stress of polymer glasses directly from processing conditions: application to miscible systemscitations
- 2009Numerical simulation of flat-tip micro-indentation of glassy polymers: influence of loading speed and thermodynamic statecitations
- 2006Indentation: the experimenter's holy grail for small-scale polymer characterization?
- 2006Modelling large-strain deformation of thermo-rheologically complex materials : characterisation and validation of PMMA and iPP
- 2005Quantitative prediction of long-term failure of Polycarbonatecitations
- 2004Structure, deformation, and failure of flow-oriented semicrystalline polymerscitations
Places of action
Organizations | Location | People |
---|
article
Shear-Induced Structure Formation in MAH-g-PP Compatibilized Polypropylenes
Abstract
The effect of maleic-anhydride-grafted polypropylene compatibilizer on the crystallization behavior of two isotactic polypropylene homopolymers is experimentally investigated under both quiescent and shear flow conditions. A traditional combination of optical microscopy and calorimetric techniques is used to quantify crystal nucleation and growth rates and suggests a minute increase in nucleation density when the compatibilizer is added. The flow properties of these systems are assessed by means of oscillatory shear rheometry. The altered flow characteristics can be explained based on the molecular weight distribution of the individual blend components, and no influence of maleic anhydride incorporation on the rheological properties is found. While the addition of a small amount of this compatibilizer thus leads to only a slight acceleration of the crystallization kinetics in quiescent conditions, it markedly enhances the crystallization rate when a mild (and strong) shear flow is applied. In the latter case, the resulting morphology and crystal modification are considerably different as compared to crystallization conditions without the presence of flow; in addition to having significantly faster flow-induced crystallization kinetics (I), when the system contains maleic anhydride compatibilization, the formation of oriented structures is hindered (II), and the appearance of the β-modification is suppressed (III) with respect to the homopolymers, which in turn affects the mechanical properties of the material. This result highlights the importance of understanding the crystallization kinetics under processing relevant conditions in order to get a step closer toward full control over the crystallizing microstructure and the subsequent mechanical performance of polyolefin-based composites.