People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Parisi, Daniele
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Phase inversion detection in immiscible binary polymer blends via zero-shear viscosity measurementscitations
- 2024Phase inversion detection in immiscible binary polymer blends via zero-shear viscosity measurementscitations
- 2024A novel SBS compound via blending with PS-B-PMBL diblock copolymer for enhanced mechanical propertiescitations
- 2024Enzymatic bulk synthesis, characterization, rheology, and biodegradability of biobased 2,5-bis(hydroxymethyl)furan polyesterscitations
- 2023Effect of Dynamically Arrested Domains on the Phase Behavior, Linear Viscoelasticity and Microstructure of Hyaluronic Acid - Chitosan Complex Coacervatescitations
- 2023Effect of Dynamically Arrested Domains on the Phase Behavior, Linear Viscoelasticity and Microstructure of Hyaluronic Acid - Chitosan Complex Coacervatescitations
- 2023Gelation and Re-entrance in Mixtures of Soft Colloids and Linear Polymers of Equal Sizecitations
- 2023Hydrophobically modified complex coacervates for designing aqueous pressure-sensitive adhesivescitations
- 2023Hydrophobically modified complex coacervates for designing aqueous pressure-sensitive adhesivescitations
- 2023Undershoots in shear startup of entangled linear polymer blendscitations
- 2022Alternative use of the sentmanat extensional rheometer to investigate the rheological behavior of industrial rubbers at very large deformationscitations
- 2021Nonlinear rheometry of entangled polymeric rings and ring-linear blendscitations
- 2021Internal Microstructure Dictates Interactions of Polymer-grafted Nanoparticles in Solutioncitations
- 2021Effect of softness on glass melting and re-entrant solidification in mixtures of soft and hard colloidscitations
- 2021Tunable Hydrogels with Improved Viscoelastic Properties from Hybrid Polypeptidescitations
- 2021Rheological response of entangled isotactic polypropylene melts in strong shear flowscitations
- 2021Nonlinear Shear Rheology of Entangled Polymer Ringscitations
- 2020Flow-induced crystallization of poly(ether ether ketone)citations
- 2020Determination of intrinsic viscosity of native cellulose solutions in ionic liquidscitations
- 2020Stress Relaxation in Symmetric Ring-Linear Polymer Blends at Low Ring Fractionscitations
- 2020Shear Flow-Induced Crystallization of Poly(ether ether ketone)citations
- 2019Extensional rheology of ring polystyrene melt and linear/ring polystyrene blends
- 2019Extensional rheology of ring polystyrene melt and linear/ring polystyrene blends
- 2018Asymmetric soft-hard colloidal mixturescitations
Places of action
Organizations | Location | People |
---|
article
Gelation and Re-entrance in Mixtures of Soft Colloids and Linear Polymers of Equal Size
Abstract
<p>Liquid mixtures composed of colloidal particles and much smaller non-adsorbing linear homopolymers can undergo a gelation transition due to polymer-mediated depletion forces. We now show that the addition of linear polymers to suspensions of soft colloids having the same hydrodynamic size yields a liquid-to-gel-to-re-entrant liquid transition. In particular, the dynamic state diagram of 1,4-polybutadiene star-linear polymer mixtures was determined with the help of linear viscoelastic and small-angle X-ray scattering experiments. While keeping the star polymers below their nominal overlap concentration, a gel was formed upon increasing the linear polymer content. Further addition of linear chains yielded a re-entrant liquid. This unexpected behavior was rationalized by the interplay of three possible phenomena: (i) depletion interactions, driven by the size disparity between the stars and the polymer length scale which is the mesh size of its entanglement network; (ii) colloidal deswelling due to the increased osmotic pressure exerted onto the stars; and (iii) a concomitant progressive suppression of the depletion efficiency on increasing the polymer concentration due to reduced mesh size, hence a smaller range of attraction. Our results unveil an exciting new way to tailor the flow of soft colloids and highlight a largely unexplored path to engineer soft colloidal mixtures.</p>