People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moggach, Stephen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Tandem High-Pressure Crystallography-Optical Spectroscopy Unpacks Noncovalent Interactions of Piezochromic Fluorescent Molecular Rotorscitations
- 2021Poly(2-hydroxyethyl methacrylate) hydrogels doped with copper nanoparticlescitations
- 2021Guest-mediated phase transitions in a flexible pillared-layered metal–organic framework under high-pressurecitations
- 2021(η4-Tetrafluorobenzobarrelene)-η1-((tri-4-fluorophenyl)phosphine)-η1-(2-phenylphenyl)rhodium(I)citations
- 2020Single-Crystal X-Ray Diffraction Study of Pressure and Temperature-Induced Spin Trapping in a Bistable Iron(II) Hofmann Frameworkcitations
- 2020High-pressure sapphire capillary cell for synchrotron single-crystal X-ray diffraction measurements to 1500 barcitations
- 2009High pressure induced spin changes and magneto-structural correlations in hexametallic SMMscitations
Places of action
Organizations | Location | People |
---|
article
(η4-Tetrafluorobenzobarrelene)-η1-((tri-4-fluorophenyl)phosphine)-η1-(2-phenylphenyl)rhodium(I)
Abstract
<p>(η4-Tetrafluorobenzobarrelene)-η1-((tri-4-fluorophenyl)phosphine)-η1-(2-phenylphenyl)rhodium(I), Rh(tfb)(biph)(PAr3), was prepared and evaluated as a catalyst in the controlled, stereospecific (co)polymerization of arylacetylenes. Following recrystallization, the complex was characterized by single-crystal X-ray diffraction, elemental analysis, and multinuclear NMR spectroscopy, including 103Rh and 31P-103Rh{1H, 103Rh} heteronuclear multiple quantum coherence (HMQC) experiments. Single-crystal X-ray diffraction indicated that Rh(tfb)(biph)(PAr3) adopts a slightly distorted square-planar geometry consistent with previously reported tetracoordinate rhodium(I)-aryl and -vinyl complexes. 103Rh and 2D 31P-103Rh{1H} HMQC NMR spectroscopy confirmed the purity and stability of the new complex in solution. In the presence of excess P(4-FC6H4)3 as a rate modifier, the Rh(I)-aryl catalyst mediated the homopolymerization of phenylacetylene, PhC2H, in a controlled manner as evidenced from the linearity of the pseudo-first-order kinetic plots, the evolution of molecular weight and dispersity, and the quantitative crossover efficiency in a self-blocking experiment. The broader utility of Rh(tfb)(biph)(PAr3) was demonstrated in the polymerization of a series of functional arylacetylenes, including 4-trifluoromethoxyphenylacetylene and 3,4-dichlorophenylacetylene, as well as in the preparation of well-defined AB diblock copolymers of phenylacetylene with the trifluoromethoxy and dichloro derivatives. Computational studies using density functional theory allowed a quantitative comparison between Rh(tfb)(biph)(PAr3) and the 2,5-norbornadiene (nbd) analogue, Rh(nbd)(biph)(PAr3). Results indicated that the former has a lower HOMO energy compared to the nbd derivative and is consistent with the enhanced π-acidity of the tetrafluorobenzobarrelene ligand species. Calculations similarly indicated that Rh(tfb)(biph)(PAr3) has a slightly higher binding affinity for PhC2H. Finally, we highlight the role the biph aryl ligand plays in stabilizing the rhodium complex through a C-H agostic and η2-πinteractions and different steps in the catalyst initiation process. </p>