Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jayaraman, Ashish

  • Google
  • 5
  • 8
  • 200

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Tuning Diblock Copolymer Particle Packing Symmetry with Variable Molecular Weight Core-Homopolymers18citations
  • 2021Quasicrystals and Their Approximants in a Crystalline–Amorphous Diblock Copolymer38citations
  • 2021Dodecagonal quasicrystals of oil-swollen ionic surfactant micelles26citations
  • 2020Emergence of a C15 Laves Phase in Diblock Polymer/Homopolymer Blends72citations
  • 2019Path-Dependent Preparation of Complex Micelle Packings of a Hydrated Diblock Oligomer46citations

Places of action

Chart of shared publication
Weigand, Steven
1 / 4 shared
Lindsay, Aaron P.
3 / 6 shared
Bates, Frank S.
3 / 90 shared
Mueller, Andreas J.
3 / 4 shared
Baez-Cotto, Carlos M.
1 / 3 shared
Mann, Tyler J.
1 / 2 shared
Zhang, Diana Y.
1 / 1 shared
Dewing, Beth L.
1 / 1 shared
Chart of publication period
2022
2021
2020
2019

Co-Authors (by relevance)

  • Weigand, Steven
  • Lindsay, Aaron P.
  • Bates, Frank S.
  • Mueller, Andreas J.
  • Baez-Cotto, Carlos M.
  • Mann, Tyler J.
  • Zhang, Diana Y.
  • Dewing, Beth L.
OrganizationsLocationPeople

article

Quasicrystals and Their Approximants in a Crystalline–Amorphous Diblock Copolymer

  • Lindsay, Aaron P.
  • Bates, Frank S.
  • Mueller, Andreas J.
  • Jayaraman, Ashish
Abstract

<p>Discoveries of Frank-Kasper phases and closely related dodecagonal quasicrystals (DDQCs) in soft, mesoscopic systems have galvanized efforts to unveil the fundamental mechanisms that drive the formation of these remarkably complex micellar packings. Toward this end, we report temperature-dependent small-angle X-ray scattering analyses of a crystalline-amorphous poly(ethylene oxide)-block-poly(2-ethyl hexylacrylate) (OA) diblock copolymer with Mn = 8300 g/mol, C = Mw/Mn = 1.10, and volume composition fO = 0.21. On heating at ambient temperature, this polymer assembles sequentially into five distinct morphologies prior to melt disordering at TODT = 69 °C: semicrystalline lamellae (Lc), a liquid-like packing (LLP) of particles lacking translational order, an aperiodically ordered DDQC, a periodic FK σ phase, and a body-centered cubic (BCC) packing of particles. Detailed investigations of thermal processing conditions that foster DDQC formation reveal that this metastable morphology only forms in melts exhibiting LLP characteristics arising from either melting the Lc phase at low temperature or quenching a high-temperature disordered state, and that this DDQC eventually evolves into a σ approximant phase. Cooling a well-ordered BCC phase induces direct formation of a σ phase with no evidence of DDQC formation, suggesting the critical importance of particle size distribution of the disorganized yet segregated LLP state in triggering the emergence of a DDQC.</p>

Topics
  • amorphous
  • melt
  • copolymer
  • X-ray scattering
  • quenching
  • lamellae
  • liquid chromatography
  • semicrystalline