People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Carlström, Göran
Lund University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2020Spherical Micelles with Nonspherical Cores: Effect of Chain Packing on the Micellar Shapecitations
- 2020Spherical Micelles with Nonspherical Corescitations
- 2020Spherical Micelles with Nonspherical Cores : Effect of Chain Packing on the Micellar Shapecitations
- 2016Diastereomerization Dynamics of a Bistridentate RuII Complexcitations
- 2016Diastereomerization Dynamics of a Bistridentate RuII Complexcitations
Places of action
Organizations | Location | People |
---|
article
Spherical Micelles with Nonspherical Cores
Abstract
<p>Self-assembly of amphiphilic polymers into micelles is an archetypical example of a "self-confined"system due to the formation of micellar cores with dimensions of a few nanometers. In this work, we investigate the chain packing and resulting shape of Cn-PEOx micelles with semicrystalline cores using small/wide-angle X-ray scattering (SAXS/WAXS), contrast-variation small-angle neutron scattering (SANS), and nuclear magnetic resonance spectroscopy (NMR). Interestingly, the n-alkyl chains adopt a rotator-like conformation and pack into prolate ellipses (axial ratio ϵ ≈ 0.5) in the "crystalline"region and abruptly arrange into a more spheroidal shape (ϵ ≈ 0.7) above the melting point. We attribute the distorted spherical shape above the melting point to thermal fluctuations and intrinsic rigidity of the n-alkyl blocks. We also find evidence for a thin dehydrated PEO layer (≤1 nm) close to the micellar core. The results provide substantial insight into the interplay between crystallinity and molecular packing in confinement and the resulting overall micellar shape. </p>