People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Parisi, Daniele
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Phase inversion detection in immiscible binary polymer blends via zero-shear viscosity measurementscitations
- 2024Phase inversion detection in immiscible binary polymer blends via zero-shear viscosity measurementscitations
- 2024A novel SBS compound via blending with PS-B-PMBL diblock copolymer for enhanced mechanical propertiescitations
- 2024Enzymatic bulk synthesis, characterization, rheology, and biodegradability of biobased 2,5-bis(hydroxymethyl)furan polyesterscitations
- 2023Effect of Dynamically Arrested Domains on the Phase Behavior, Linear Viscoelasticity and Microstructure of Hyaluronic Acid - Chitosan Complex Coacervatescitations
- 2023Effect of Dynamically Arrested Domains on the Phase Behavior, Linear Viscoelasticity and Microstructure of Hyaluronic Acid - Chitosan Complex Coacervatescitations
- 2023Gelation and Re-entrance in Mixtures of Soft Colloids and Linear Polymers of Equal Sizecitations
- 2023Hydrophobically modified complex coacervates for designing aqueous pressure-sensitive adhesivescitations
- 2023Hydrophobically modified complex coacervates for designing aqueous pressure-sensitive adhesivescitations
- 2023Undershoots in shear startup of entangled linear polymer blendscitations
- 2022Alternative use of the sentmanat extensional rheometer to investigate the rheological behavior of industrial rubbers at very large deformationscitations
- 2021Nonlinear rheometry of entangled polymeric rings and ring-linear blendscitations
- 2021Internal Microstructure Dictates Interactions of Polymer-grafted Nanoparticles in Solutioncitations
- 2021Effect of softness on glass melting and re-entrant solidification in mixtures of soft and hard colloidscitations
- 2021Tunable Hydrogels with Improved Viscoelastic Properties from Hybrid Polypeptidescitations
- 2021Rheological response of entangled isotactic polypropylene melts in strong shear flowscitations
- 2021Nonlinear Shear Rheology of Entangled Polymer Ringscitations
- 2020Flow-induced crystallization of poly(ether ether ketone)citations
- 2020Determination of intrinsic viscosity of native cellulose solutions in ionic liquidscitations
- 2020Stress Relaxation in Symmetric Ring-Linear Polymer Blends at Low Ring Fractionscitations
- 2020Shear Flow-Induced Crystallization of Poly(ether ether ketone)citations
- 2019Extensional rheology of ring polystyrene melt and linear/ring polystyrene blends
- 2019Extensional rheology of ring polystyrene melt and linear/ring polystyrene blends
- 2018Asymmetric soft-hard colloidal mixturescitations
Places of action
Organizations | Location | People |
---|
article
Flow-induced crystallization of poly(ether ether ketone)
Abstract
<p>When a semicrystalline polymer melt is processed in intense flow, the nucleation rate can be accelerated and the resultant morphology is transformed to anisotropic structures. These cumulative changes to the crystallization process are referred to as flow-induced crystallization (FIC). In this study, shear flow-induced crystal formations of poly(ether ether ketone) (PEEK) are investigated after applying a short-term shear (γ' = 20 s<sup>-1</sup> and t<sub>s</sub> < 230 s) via rheology and ex situ small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). Using rheology, three types of dynamic response are monitored during FIC: no flow effect, nucleation acceleration, and instant crystal growth without crystallization induction time. Ex situ SAXS is employed with sheared PEEK disks to evaluate the flow-induced lamellar structure and orientation. The short-term shear changes the fraction and degree of lamellar stack orientation, whereas the lamellar structure is barely affected by shear, in terms of the long spacing (L* = 14.6 nm), linear crystallinity (χ<sub>c</sub> = 0.34), and crystalline and amorphous layer thicknesses (L<sub>c</sub> = 5.0 nm and L<sub>a</sub> = 9.6 nm). Ex situ WAXS patterns indicate that PEEK chains (c-axis) are aligned in the shear direction within crystalline domains.</p>