People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thurn-Albrecht, Thomas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (41/41 displayed)
- 2024Poly-3-hydroxybutyrate, a Crystal-Mobile Biodegradable Polyester
- 2024Controlling crystal orientation in films of conjugated polymers by tuning the surface energy
- 2023On thermodynamics and kinetics of interface-induced crystallization in polymers
- 2023How entanglements determine the morphology of semicrystalline polymers
- 2022Bulk enthalpy of melting of Poly (l-lactic acid) (PLLA) determined by fast scanning chip calorimetry
- 2022Bulk Enthalpy of Melting of Poly (l-lactic acid) (PLLA) Determined by Fast Scanning Chip Calorimetry
- 2022Competition between crystal growth and intracrystalline chain diffusion determines the lamellar thickness in semicrystalline polymerscitations
- 2022Competition between crystal growth and intracrystalline chain diffusion determines the lamellar thickness in semicrystalline polymers
- 2021Digitally Tuned Multidirectional All-Polyethylene Composites via Controlled 1D Nanostructure Formation during Extrusion-Based 3D Printingcitations
- 2020Influence of ω-Bromo Substitution on Structure and Optoelectronic Properties of Homopolymers and Gradient Copolymers of 3-Hexylthiophenecitations
- 2020Structure–Property Relationships of Microphase-Separated Metallosupramolecular Polymerscitations
- 2019Intracrystalline Dynamics in Oligomer‐Diluted Poly(Ethylene Oxide)citations
- 2018Modular Synthesis and Structure Analysis of P3HT-b-PPBI Donor–Acceptor Diblock Copolymerscitations
- 2018The Underestimated Effect of Intracrystalline Chain Dynamics on the Morphology and Stability of Semicrystalline Polymerscitations
- 2017Manipulating Semicrystalline Polymers in Confinementcitations
- 2016Influence of Fullerene Grafting Density on Structure, Dynamics, and Charge Transport in P3HT-<i>b</i>-PPC<sub>61</sub>BM Block Copolymerscitations
- 2016Thermally stable and efficient polymer solar cells based on a novel donor-acceptor copolymercitations
- 2016Crystallization of Poly(ethylene oxide) with a Well-Defined Point Defect in the Middle of the Polymer Chaincitations
- 2014Detection of Surface-Immobilized Components and Their Role in Viscoelastic Reinforcement of Rubber–Silica Nanocompositescitations
- 2014Studying Twin Samples Provides Evidence for a Unique Structure-Determining Parameter in Simplifed Industrial Nanocompositescitations
- 2014Donor–acceptor block copolymers carrying pendant PC<sub>71</sub>BM fullerenes with an ordered nanoscale morphologycitations
- 2014Nanostructure and Rheology of Hydrogen-Bonding Telechelic Polymers in the Melt: From Micellar Liquids and Solids to Supramolecular Gelscitations
- 2014Studying Twin Samples Provides Evidence for a Unique Structure-Determining Parameter in Simplifed Industrial Nanocompositescitations
- 2013Phase Separation in the Melt and Confined Crystallization as the Key to Well-Ordered Microphase Separated Donor–Acceptor Block Copolymerscitations
- 2013Crystallization of Supramolecular Pseudoblock Copolymerscitations
- 2012Investigation of the different stable states of the cantilever oscillation in an atomic force microscopecitations
- 2012Mechanical Properties and Cross-Link Density of Styrene–Butadiene Model Composites Containing Fillers with Bimodal Particle Size Distributioncitations
- 2012Thermotropic Behavior, Packing, and Thin Film Structure of an Electron Accepting Side-Chain Polymercitations
- 2011Poly(ε-caprolactone)-poly(isobutylene): A crystallizing, hydrogen-bonded pseudo-block copolymercitations
- 2011Crystallization and Melting of Poly(ethylene oxide) in Blends and Diblock Copolymers with Poly(methyl acrylate)citations
- 2010Morphology development and compatibilization effect in nanoclay filled rubber blendscitations
- 2010Fabrication and characterization of a biomimetic composite scaffold for bone defect repaircitations
- 2010High Crystallinity and Nature of Crystal−Crystal Phase Transformations in Regioregular Poly(3-hexylthiophene)citations
- 2010Tuning and Switching the Hypersonic Phononic Properties of Elastic Impedance Contrast Nanocompositescitations
- 2010Fiber - and Tube - Formation by Melt Infiltration of Block Copolymers into Al<sub>2</sub> O<sub>3</sub> -Porescitations
- 2009Quantitative Analysis of Scanning Force Microscopy Data Using Harmonic Modelscitations
- 2004Semicrystalline morphology in thin films of poly(3-hexylthiophene)
- 2001On exfoliation of montmorillonite in epoxycitations
- 2001Electrohydrodynamic instabilities in polymer films
- 2000X-ray scattering study and molecular simulation of glass forming liquids: Propylene carbonate and salolcitations
- 2000Electrically induced structure formation and pattern transfer citations
Places of action
Organizations | Location | People |
---|
article
Structure–Property Relationships of Microphase-Separated Metallosupramolecular Polymers
Abstract
The structural, thermomechanical, and viscoelastic properties of metallosupramolecular polymers (MSPs) can be controlled through the choice of the multiligand monomer and the nature of the metal salt from which these materials are assembled. This versatility and the dynamic nature of certain metal–ligand (ML) complexes make MSPs very interesting for the design of stimuli-responsive materials. We here report on the investigation of the structure–property relationships of MSPs based on a macromonomer formed by terminating telechelic poly(ethylene-co-butylene) (PEB) with 2,6-bis(1′-methylbenzimidazolyl)pyridine (Mebip) ligands and transition metal or lanthanoid salts. The nature of the metal ion (Zn2+, Fe2+, Tb3+, La3+, or Gd3+), the counterion (trifluoromethanesulfonate (OTf–), perchlorate (ClO4–), or bis(trifluoromethylsulfonyl)imide (NTf2–)), and the number-average molecular weight (Mn) of the PEB core (2100 or 3100 g mol–1) were systematically varied with the aim to provide an improved understanding of how these parameters influence the properties. In all MSPs, the polar ML complexes and the nonpolar PEB were found to microphase separate into lamellar or hexagonal morphologies with a soft PEB phase and a ML hard phase. The microstructure formation and the mechanical properties were significantly influenced by the coordination geometry of the metal–ligand complexes as well as the volume fraction of the ML phase. The nature of the metal and counterions further affected the glass or melting transitions of the hard phase. In general, lower softening temperatures were observed for the MSPs made with lanthanoid salts. Measurements of the frequency-dependent oscillatory shear moduli were used to study the relaxation processes in the different MSPs and allowed determining the activation energy of the ML complexes in lanthanoid-based MSPs.