People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Knaapila, Matti
Norwegian University of Science and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Classifying Tensile Loading History of Continuous Carbon Fiber Composites Using X‐Ray Scattering and Machine Learningcitations
- 2024Multi-scale correlation of impact-induced defects in carbon fiber composites using X-ray scattering and machine learning
- 2023Structural Study of Diketopyrrolopyrrole Derivative Thin Films: Influence of Deposition Method, Substrate Surface, and Aging
- 2023Structural Study of Diketopyrrolopyrrole Derivative Thin Films: Influence of Deposition Method, Substrate Surface, and Aging
- 2023Structural Study of Diketopyrrolopyrrole Derivative Thin Films: Influence of Deposition Method, Substrate Surface, and Aging
- 2022Local structure mapping of gel-spun ultrahigh-molecular-weight polyethylene fiberscitations
- 2022Classifying condition of ultra-high-molecular-weight polyethylene ropes with wide-angle X-ray scatteringcitations
- 2022Classifying condition of ultra-high-molecular-weight polyethylene ropes with wide-angle X-ray scatteringcitations
- 2021Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenescitations
- 2021Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenescitations
- 2021Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenescitations
- 2021Structural effects of electrode proximity in vacuum deposited organic semiconductors studied by microfocused X-ray scatteringcitations
- 2021Structural effects of electrode proximity in vacuum deposited organic semiconductors studied by microfocused X-ray scatteringcitations
- 2020Surface-Controlled Crystal Alignment of Naphthyl End-Capped Oligothiophene on Graphene: Thin-Film Growth Studied by In Situ X-ray Diffractioncitations
- 2020Surface-Controlled Crystal Alignment of Naphthyl End-Capped Oligothiophene on Graphene: Thin-Film Growth Studied by in Situ X-ray Diffractioncitations
- 2016Incorporation of a Cationic Conjugated Polyelectrolyte CPE within an Aqueous Poly(vinyl alcohol) Solcitations
- 2016Self-assembled systems of water soluble metal 8-hydroxyquinolates with surfactants and conjugated polyelectrolytescitations
- 2015Solid State Structure of Poly(9,9-dinonylfluorene)citations
- 2014Transparency Enhancement for Photoinitiated Polymerization (UV-curing) through Magnetic Field Alignment in a Piezoresistive Metal/Polymer Compositecitations
- 2009Aqueous Solution Behavior of Anionic Fluorene-co-thiophene-Based Conjugated Polyelectrolytescitations
- 2001Self-organization of nitrogen-containing polymeric supramolecules in thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Surface-Controlled Crystal Alignment of Naphthyl End-Capped Oligothiophene on Graphene: Thin-Film Growth Studied by In Situ X-ray Diffraction
Abstract
<p>We report on the microstructure, morphology, and growth of 5,5′-bis(naphth-2-yl)-2,2′-bithiophene (NaT2) thin films deposited on graphene, characterized by grazing incidence X-ray diffraction (GIXRD) and complemented by atomic force microscopy (AFM) measurements. NaT2 is deposited on two types of graphene surfaces: custom-made samples where chemical vapor deposition (CVD)-grown graphene layers are transferred onto a Si/SiO<sub>2</sub> substrate by us and common commercially transferred CVD graphene on Si/SiO<sub>2</sub>. Pristine Si/SiO<sub>2</sub> substrates are used as a reference. The NaT2 crystal structure and orientation depend strongly on the underlying surface, with the molecules predominantly lying down on the graphene surface (face-on orientation) and standing nearly out-of-plane (edge-on orientation) on the Si/SiO<sub>2</sub> reference surface. Post growth GIXRD and AFM measurements reveal that the crystalline structure and grain morphology differ depending on whether there is polymer residue left on the graphene surface. In situ GIXRD measurements show that the thickness dependence of the intensity of the (111) reflection from the crystalline edge-on phase does not intersect zero at the beginning of the deposition process, suggesting that an initial wetting layer, corresponding to 1-2 molecular layers, is formed at the surface-film interface. By contrast, the (111) reflection intensity from the crystalline face-on phase grows at a constant rate as a function of film thickness during the entire deposition.</p>