People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Luxenhofer, Robert
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2025Amorphous solid dispersions of amphiphilic polymer excipients and indomethacin prepared by hot melt extrusioncitations
- 2024Amorphous solid dispersions of amphiphilic polymer excipients and indomethacin prepared by hot melt extrusioncitations
- 2024Perfusable Tissue Bioprinted into a 3D-Printed Tailored Bioreactor Systemcitations
- 2023Investigation of cationic ring-opening polymerization of 2-oxazolines in the "green" solvent dihydrolevoglucosenonecitations
- 2021Poly(2-ethyl-2-oxazoline-co-N-propylethylene imine)s by controlled partial reduction of poly(2-ethyl-2-oxazoline)citations
- 2021From Thermogelling Hydrogels toward Functional Bioinkscitations
- 2021Melt electrowriting of poly(vinylidene difluoride) using a heated collectorcitations
- 2021Probing the Complex Loading-Dependent Structural Changes in Ultrahigh Drug-Loaded Polymer Micelles by Small-Angle Neutron Scatteringcitations
- 2021Poly(2-ethyl-2-oxazoline-co-N-propylethylene imine)s by controlled partial reduction of poly(2-ethyl-2-oxazoline) : synthesis, characterization and cytotoxicitycitations
- 2021Inverse Thermogelation of Aqueous Triblock Copolymer Solutions into Macroporous Shear-Thinning 3D Printable Inkscitations
- 2021From Thermogelling Hydrogels toward Functional Bioinks : Controlled Modification and Cytocompatible Crosslinkingcitations
- 2021Poly(2-ethyl-2-oxazoline-co-N-propylethylene imine)s by controlled partial reduction of poly(2-ethyl-2-oxazoline): synthesis, characterization and cytotoxicitycitations
- 2021Think Beyond the Core : Impact of the Hydrophilic Corona on Drug Solubilization Using Polymer Micellescitations
- 2021Freeform direct laser writing of versatile topological 3D scaffolds enabled by intrinsic support hydrogelcitations
- 2021Poly(2-ethyl-2-oxazoline-co-N -propylethylene imine)s by controlled partial reduction of poly(2-ethyl-2-oxazoline): Synthesis, characterization and cytotoxicitycitations
- 2021Development of a 3D printable and highly stretchable ternary organic–inorganic nanocomposite hydrogelcitations
- 2020Think Beyond the Corecitations
- 2020Probing the Complex Loading-Dependent Structural Changes in Ultrahigh Drug-Loaded Polymer Micelles by Small-Angle Neutron Scatteringcitations
- 2020Probing the Complex Loading-Dependent Structural Changes in Ultrahigh Drug-Loaded Polymer Micelles by Small-Angle Neutron Scatteringcitations
- 2019Silanization of silica nanoparticles and their processing as nanostructured micro-raspberry powders - a route to control the mechanical properties of isoprene rubber compositescitations
- 2018Colloidal core-satellite supraparticles via preprogramed burst of nanostructured micro-raspberry particlescitations
- 2017Burstable nanostructured micro-raspberries: Towards redispersible nanoparticles from dry powderscitations
- 2011Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphilescitations
Places of action
Organizations | Location | People |
---|
article
Probing the Complex Loading-Dependent Structural Changes in Ultrahigh Drug-Loaded Polymer Micelles by Small-Angle Neutron Scattering
Abstract
<p>Drug-loaded polymer micelles or nanoparticles are being continuously explored in the fields of drug delivery and nanomedicine. Commonly, a simple core-shell structure is assumed, in which the core incorporates the drug and the corona provides steric shielding, colloidal stability, and prevents protein adsorption. Recently, the interactions of the dissolved drug with the micellar corona have received increasing attention. Here, using small-angle neutron scattering, we provide an in-depth study of the differences in polymer micelle morphology of a small selection of structurally closely related polymer micelles at different loadings with the model compound curcumin. This work supports a previous study using solid-state nuclear magnetic resonance spectroscopy and we confirm that the drug resides predominantly in the core of the micelle at low drug loading. As the drug loading increases, neutron scattering data suggests that an inner shell is formed, which we interpret as the corona also starting to incorporate the drug, whereas the outer shell mainly contains water and the polymer. The presented data clearly shows that a better understanding of the inner morphology and the impact of the hydrophilic block can be important parameters for improved drug loading in polymer micelles as well as provide insights into the structure-property relationship.</p>