People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Blankenburg, Malte
Deutsches Elektronen-Synchrotron DESY
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Impact of sulfur addition on the structure and dynamics of Ni–Nb alloy meltscitations
- 2024Impact of sulfur addition on the structure and dynamics of Ni–Nb alloy meltscitations
- 2024Corrosion behavior of laser powder bed fusion manufactured nickel-free stainless steels in high-temperature watercitations
- 2023Revealing Precipitate Development During Hot Rolling and Cooling of a Ti–Nb Micro-Alloyed High Strength Low-Alloy Steel through X-Ray Scatteringcitations
- 2023Anisotropic strain variations during the confined growth of Au nanowirescitations
- 2022Revealing Precipitate Development During Hot Rolling and Cooling of a Ti–Nb Micro-Alloyed High Strength Low-Alloy Steel through X-Ray Scatteringcitations
- 2022Residual stresses in additive manufactured precision cemented carbide parts
- 2022Microstructural Constituents and Mechanical Properties of Low-Density Fe-Cr-Ni-Mn-Al-C Stainless Steelscitations
- 2022Effect of composition and thermal history on deformation behavior and cluster connections in model bulk metallic glassescitations
- 2021In situ observation of ternary eutectic growth in a directionally solidified Mo–Si–B alloy using high‐energy synchrotron X‐rayscitations
- 2021Defects and plasticity in ultrastrong supercrystalline nanocompositescitations
- 2021An in situ high-energy synchrotron x-ray diffraction study of directional solidification in binary TiAl alloyscitations
- 2021Deformation Behavior of Cross-Linked Supercrystalline Nanocomposites: An in Situ SAXS/WAXS Study during Uniaxial Compressioncitations
- 2021Deformation Behavior of Cross-Linked Supercrystalline Nanocompositescitations
- 2020Strong Macroscale Supercrystalline Structures by 3D Printing Combined with Self‐Assembly of Ceramic Functionalized Nanoparticlescitations
- 2020Microstructural investigations of novel high temperature alloys based on NiAl-(Cr,Mo)citations
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticlescitations
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticles
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticlescitations
- 2019Iron oxide-based nanostructured ceramics with tailored magnetic and mechanical properties: Development of mechanically robust, bulk superparamagnetic materials
- 2019Tuning the Elasticity of Cross-Linked Gold Nanoparticle Assembliescitations
- 2019Iron oxide-based nanostructured ceramics with tailored magnetic and mechanical properties: development of mechanically robust, bulk superparamagnetic materialscitations
- 2019Modulating the Mechanical Properties of Supercrystalline Nanocomposite Materials via Solvent–Ligand Interactionscitations
- 2017Local flow stresses in interpenetrating-phase composites based on nanoporous gold — In situ diffractioncitations
- 2016Local flow stresses in interpenetrating-phase composites based on nanoporous gold — in situ diffraction
- 2016High-temperature stable Zirconia particles doped with Yttrium, Lanthanum, and Gadoliniumcitations
Places of action
Organizations | Location | People |
---|
article
Modulating the Mechanical Properties of Supercrystalline Nanocomposite Materials via Solvent–Ligand Interactions
Abstract
Supercrystalline nanocomposite materials with micromechanicalproperties approaching those of nacre or similarstructural biomaterials can be produced by self-assembly oforganically modified nanoparticles and further strengthened bycross-linking. The strengthening of these nanocomposites iscontrolled via thermal treatment, which promotes the formation ofcovalent bonds between interdigitated ligands on the nanoparticlesurface. In this work, it is shown how the extent of the mechanicalproperties enhancement can be controlled by the solvent used duringthe self-assembly step. We find that the resulting mechanicalproperties correlate with the Hansen solubility parameters of thesolvents and ligands used for the supercrystal assembly: the hardnessand elastic modulus decrease as the Hansen solubility parameter of the solvent approaches the Hansen solubility parameter ofthe ligands that stabilize the nanoparticles. Moreover, it is shown that self-assembled supercrystals that are subsequentlyuniaxially pressed can deform up to 6 %. The extent of this deformation is also closely related to the solvent used during the selfassemblystep. These results indicate that the conformation and arrangement of the organic ligands on the nanoparticle surfacenot only control the self-assembly itself but also influence the mechanical properties of the resulting supercrystalline material.The Hansen solubility parameters may therefore serve as a tool to predict what solvents and ligands should be used to obtainsupercrystalline materials with good mechanical properties.