People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Prestat, Eric
Culham Centre for Fusion Energy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2020Splenic Capture and In Vivo Intracellular Biodegradation of Biological-grade Graphene Oxide Sheetscitations
- 2019Enhanced Intraliposomal Metallic Nanoparticle Payload Capacity Using Microfluidic-Assisted Self-Assemblycitations
- 2018Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: effect of lateral flake size and chemical functionalizationcitations
- 2018Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: effect of lateral flake size and chemical functionalizationcitations
- 2017A Simple Electrochemical Route to Metallic Phase Trilayer MoS2: evaluation as Electrocatalysts and Supercapacitorscitations
- 2017A Simple Electrochemical Route to Metallic Phase Trilayer MoS2: evaluation as Electrocatalysts and Supercapacitorscitations
- 2017Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillerscitations
- 2017Role of 2D and 3D defects on the reduction of LaNiO 3 nanoparticles for catalysiscitations
- 2017In Situ Industrial Bimetallic Catalyst Characterisation using Scanning Transmission Electron Microscopy and X-Ray Absorption Spectroscopy at One Atmosphere and Elevated Temperaturecitations
- 2017In Situ Industrial Bimetallic Catalyst Characterisation using Scanning Transmission Electron Microscopy and X-Ray Absorption Spectroscopy at One Atmosphere and Elevated Temperaturecitations
- 2017Observing imperfection in atomic interfaces for van der Waals heterostructurescitations
- 2017EXPLORING NANOSCALE PRECURSOR REACTIONS IN ALLOY 600 IN H2/N2-H2O VAPOR USING IN SITU ANALYTICAL TRANSMISSION ELECTRON MICROSCOPYcitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2017EXPLORING NANOSCALE PRECURSOR REACTIONS IN ALLOY 600 IN H 2 /N 2 -H 2 O VAPOR USING IN SITU ANALYTICAL TRANSMISSION ELECTRON MICROSCOPYcitations
- 2017Role of 2D and 3D defects on the reduction of LaNiO3 nanoparticles for catalysiscitations
- 2016The Application of In Situ Analytical Transmission Electron Microscopy to the Study of Preferential Intergranular Oxidation in Alloy 600citations
- 2016The Application of In Situ Analytical Transmission Electron Microscopy to the Study of Preferential Intergranular Oxidation in Alloy 600citations
- 2016Imaging the hydrated microbe-metal interface using nanoscale spectrum imagingcitations
- 2016Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporositycitations
- 2014Real-time imaging and elemental mapping of AgAu nanoparticle transformationscitations
Places of action
Organizations | Location | People |
---|
article
Enhanced Intraliposomal Metallic Nanoparticle Payload Capacity Using Microfluidic-Assisted Self-Assembly
Abstract
Hybrids composed of liposomes (L) and metallic nanoparticles (NPs) hold great potential for imaging and drug delivery purposes. However, the efficient incorporation of metallic NPs into liposomes using conventional methodologies has so far proved to be challenging. In this study, we report the fabrication of hybrids of liposomes and hydrophobic gold NPs of size 2–4 nm (Au) using a microfluidic-assisted self-assembly process. The incorporation of increasing amounts of AuNPs into liposomes was examined using microfluidics and compared to L–AuNP hybrids prepared by the reverse-phase evaporation method. Our microfluidics strategy produced L–AuNP hybrids with a homogeneous size distribution, a smaller polydispersity index, and a threefold increase in loading efficiency when compared to those hybrids prepared using the reverse-phase method of production. Quantification of the loading efficiency was determined by ultraviolet spectroscopy, inductively coupled plasma mass spectroscopy, and centrifugal field flow fractionation, and qualitative validation was confirmed by transmission electron microscopy. The higher loading of gold NPs into the liposomes achieved using microfluidics produced a slightly thicker and more rigid bilayer as determined with small-angle neutron scattering. These observations were confirmed using fluorescent anisotropy and atomic force microscopy. Structural characterization of the liposomal–NP hybrids with cryo-electron microscopy revealed the coexistence of membrane-embedded and interdigitated NP-rich domains, suggesting AuNP incorporation through hydrophobic interactions. The microfluidic technique that we describe in this study allows for the automated production of monodisperse liposomal–NP hybrids with high loading capacity, highlighting the utility of microfluidics to improve the payload of metallic NPs within liposomes, thereby enhancing their application for imaging and drug delivery.