Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Seddon, Annela M.

  • Google
  • 6
  • 30
  • 142

University of Bristol

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022Scale-Invariance in Miniature Coarse-Grained Red Blood Cells by Fluctuation Analysis1citations
  • 2019Bénard-Marangoni Dendrites upon Evaporation of a Reactive ZnO Nanofluid Droplet6citations
  • 2018Structure of the Crystalline Core of Fiber-like Polythiophene Block Copolymer Micelles25citations
  • 2015Self-assembly of a functional oligo(aniline)-based amphiphile into helical conductive nanowires56citations
  • 2014Experimental confirmation of transformation pathways between inverse double diamond and gyroid cubic phases24citations
  • 2007Bio-functional mesolamellar nanocomposites based on inorganic/polymer intercalation in purple membrane (bacteriorhodopsin) films30citations

Places of action

Chart of shared publication
Appshaw, Paul
1 / 1 shared
Hanna, Simon
1 / 2 shared
Wasik, Patryk
1 / 3 shared
Wu, Hua
1 / 5 shared
Briscoe, Wuge H.
1 / 27 shared
Hayward, Dominic W.
1 / 2 shared
Finnegan, John R.
1 / 2 shared
Magdysyuk, Oxana
1 / 2 shared
Gould, Oliver E. C.
1 / 4 shared
Richardson, Robert M.
2 / 17 shared
Lunn, David J.
1 / 3 shared
Manners, Ian
1 / 16 shared
Whittell, George R.
1 / 7 shared
Zhang, Xi
1 / 18 shared
Faul, Charl F. J.
1 / 12 shared
Broemmel, Feli
1 / 1 shared
Harniman, Robert L.
1 / 12 shared
Haataja, Johannes S.
1 / 2 shared
Fey, Natalie
1 / 3 shared
Bell, O. A.
1 / 1 shared
Ikkala, Olli
1 / 33 shared
Wu, Guanglu
1 / 1 shared
Plivelic, Tomás S.
1 / 10 shared
Hallett, Je
1 / 3 shared
Beddoes, Charlotte
1 / 1 shared
Squires, Adam M.
1 / 5 shared
Mann, Stephen
1 / 25 shared
Bromley, Keith M.
1 / 2 shared
Booth, Paula Jane
1 / 1 shared
Patil, Avinash J.
1 / 12 shared
Chart of publication period
2022
2019
2018
2015
2014
2007

Co-Authors (by relevance)

  • Appshaw, Paul
  • Hanna, Simon
  • Wasik, Patryk
  • Wu, Hua
  • Briscoe, Wuge H.
  • Hayward, Dominic W.
  • Finnegan, John R.
  • Magdysyuk, Oxana
  • Gould, Oliver E. C.
  • Richardson, Robert M.
  • Lunn, David J.
  • Manners, Ian
  • Whittell, George R.
  • Zhang, Xi
  • Faul, Charl F. J.
  • Broemmel, Feli
  • Harniman, Robert L.
  • Haataja, Johannes S.
  • Fey, Natalie
  • Bell, O. A.
  • Ikkala, Olli
  • Wu, Guanglu
  • Plivelic, Tomás S.
  • Hallett, Je
  • Beddoes, Charlotte
  • Squires, Adam M.
  • Mann, Stephen
  • Bromley, Keith M.
  • Booth, Paula Jane
  • Patil, Avinash J.
OrganizationsLocationPeople

article

Bénard-Marangoni Dendrites upon Evaporation of a Reactive ZnO Nanofluid Droplet

  • Wasik, Patryk
  • Wu, Hua
  • Briscoe, Wuge H.
  • Seddon, Annela M.
Abstract

<p>Evaporation of a particle laden sessile drop can lead to complex surface patterns with structural hierarchy. Most commonly, the dispersed particles are inert. We have recently reported that when the sessile drop contains reactive ZnO nanoparticles, solidified Bénard-Marangoni (BM) cells with dendritic micromorphology were formed in the residual surface pattern from in situ-generated nanoclusters. Here, we report the effect of substrate chemistry on the residual pattern from the evaporation of nanofluids containing ZnO particles dispersed in a mixture of cyclohexane and isobutylamine, by comparing three different substrates: glass, silicon, and hydrophilized silicon. In particular, we performed a quantitative analysis of the BM cell size, distribution, and the cell morphological characteristics via the fractal dimension analysis. We find that the size dimension λ<sub>BM</sub>of the dendritic Bénard-Marangoni cells varied on the different substrates, attributed to their different hydrophilicity and affinity for water molecules, evident from the different polar components γ<sup>P</sup>in their surface free energy from the Owens-Wendt analysis. The average BM cell size was the smallest for the glass substrate (λ<sub>BM</sub>= 289 μm) and comparable for the unmodified and UV/ozone-treated silicon wafers (with λ<sub>BM</sub>= 466 and 423 μm, respectively). The fractal dimension analysis provided a quantitative description of the BM cells with complex structural hierarchy, highlighting the differences in the geometric features of the surface patterns resulting from different substrate chemistry. We also found that the fractal dimensions depended on the BM cell size, attributing it to two different regimes: the growing fractals and the maturing fractals.</p>

Topics
  • nanoparticle
  • surface
  • glass
  • reactive
  • glass
  • Silicon
  • evaporation
  • quantitative determination method