People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marques, Ef
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Interactions between Ionic Cellulose Derivatives Recycled from Textile Wastes and Surfactants: Interfacial, Aggregation and Wettability Studiescitations
- 2022Polymer/surfactant mixtures as dispersants and non-covalent functionalization agents of multiwalled carbon nanotubes: Synergism, morphological characterization and molecular picturecitations
- 2021Enhancing the dispersibility of multiwalled carbon nanotubes within starch-based films by the use of ionic surfactantscitations
- 2021Nanocomposites Prepared from Carbon Nanotubes and the Transition Metal Dichalcogenides WS2 and MoS2 via Surfactant-Assisted Dispersions as Electrocatalysts for Oxygen Reactionscitations
- 2021Carbon nanotube/graphene nanocomposites built via surfactant-mediated colloid assembly as metal-free catalysts for the oxygen reduction reactioncitations
- 2018Block Copolymers as Dispersants for Single-Walled Carbon Nanotubes: Modes of Surface Attachment and Role of Block Polydispersitycitations
- 2017Critical Role of the Spacer Length of Gemini Surfactants on the Formation of Ionic Liquid Crystals and Thermotropic Behaviorcitations
- 2013Self-Aggregation Properties of Ionic Liquid 1,3-Didecyl-2-methylimidazolium Chloride in Aqueous Solution: From Spheres to Cylinders to Bilayerscitations
- 2008Spontaneous vesicle formation in catanionic mixtures of amino acid-based surfactants: Chain length symmetry effectscitations
- 2007Interactions between gemini surfactants and polymers: Thermodynamic studiescitations
- 2004Network formation of catanionic vesicles and oppositely charged polyelectrolytes. Effect of polymer charge density and hydrophobic modificationcitations
Places of action
Organizations | Location | People |
---|
article
Block Copolymers as Dispersants for Single-Walled Carbon Nanotubes: Modes of Surface Attachment and Role of Block Polydispersity
Abstract
When using amphiphilic polymers to exfoliate and disperse carbon nanotubes in water, the balance between the hydrophobic and hydrophilic moieties is critical and nontrivial. Here, we investigate the mode of surface attachment of a triblock copolymer, Pluronics F127, composed of a central hydrophobic polypropylene oxide block flanked by hydrophilic polyethylene oxide blocks, onto single-walled carbon nanotubes (SWNTs). Crucially, we analyze the composition in dispersant of both the as-obtained dispersion (the supernatant) and the precipitate-containing undispersed materials. For this, we combine the carefully obtained data from H-1 NMR peak intensities and self-diffusion and thermogravimetric analysis. The molecular motions behind the observed NMR features are clarified. We find that the hydrophobic blocks attach to the dispersed SWNT surface and remain significantly immobilized leading to H-1 NMR signal loss. On the other hand, the hydrophilic blocks remain highly mobile and thus readily detectable by NMR. The dispersant is shown to possess significant block polydispersity that has a large effect on dispersibility. Polymers with large hydrophobic blocks adsorb on the surface of the carbonaceous particles that precipitate, indicating that although a larger hydrophobic block is good for enhancing adsorption, it may be less effective in dispersing the tubes. A model is also proposed that consistently explains our observations in SWNT dispersions and some contradicting findings obtained previously in carbon nanohorn dispersions. Overall, our findings help elucidating the molecular picture of the dispersion process for SWNTs and are of interest when looking for more effective (i.e., well-balanced) polymeric dispersants.