Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chakrabarti, Aditi

  • Google
  • 2
  • 8
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Buckling of a spinning elastic cylinder: linear, weakly nonlinear and post-buckling analyses10citations
  • 2018Elastowetting of Soft Hydrogel Spheres16citations

Places of action

Chart of shared publication
Audoly, Basile
1 / 4 shared
Pomeau, Yves
1 / 3 shared
Mora, Serge
1 / 9 shared
Richard, Franck
1 / 3 shared
Raphaël, Elie
1 / 5 shared
Porat, Amir
1 / 1 shared
Chaudhury, Manoj, K.
1 / 1 shared
Salez, Thomas
1 / 19 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Audoly, Basile
  • Pomeau, Yves
  • Mora, Serge
  • Richard, Franck
  • Raphaël, Elie
  • Porat, Amir
  • Chaudhury, Manoj, K.
  • Salez, Thomas
OrganizationsLocationPeople

article

Elastowetting of Soft Hydrogel Spheres

  • Chakrabarti, Aditi
  • Raphaël, Elie
  • Porat, Amir
  • Chaudhury, Manoj, K.
  • Salez, Thomas
Abstract

When a soft hydrogel sphere is placed on a rigid hydrophilic substrate, it undergoes arrested spreading by forming an axisymmetric foot near the contact line, while conserving its global spherical shape. In contrast, liquid water (that constitutes greater than 90% of the hydrogel's volume) spreads into a thin film on the same surface. We study systematically this elastowetting of gel spheres on substrates of different surface energies and find that their contact angle increases as the work of adhesion between the gel and the substrate decreases, as one would observe for drops of pure water--albeit being larger than in the latter case. This difference in the contact angles of gel and water appears to be due to the elastic shear stresses that develop in the gel and oppose its spreading. Indeed, by increasing the elastic modulus of the gel spheres, we find that their contact angle also increases. In addition, the length of the contact foot increases with the work of adhesion and sphere size, while it decreases when the elastic modulus of the gel is increased. We discuss those experimental results in light of a minimal analysis based on energy minimization, volume conservation, and scaling arguments. ; Paris Sciences et Lettres

Topics
  • impedance spectroscopy
  • surface
  • thin film
  • forming