People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Deblais, Antoine
University of Amsterdam
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Beware of CaBER:Filament thinning rheometry does not always give 'the' relaxation time of polymer solutions
- 2024Beware of CaBERcitations
- 2023Towards a constitutive relation for emulsions exhibiting a yield stresscitations
- 2022Rheology of emulsions with polymer solutions as the continuous phasecitations
- 2022Understanding the Behaviour of Real Metaborates in Solutioncitations
- 2018Dewetting of thin liquid films surrounding air bubbles in microchannelscitations
- 2015Spreading of an Oil-in-Water Emulsion on a Glass Plate: Phase Inversion and Pattern Formationcitations
- 2014Spreading of an Oil-in-Water Emulsion on a Glass Plate: Phase Inversion and Pattern Formationcitations
Places of action
Organizations | Location | People |
---|
article
Dewetting of thin liquid films surrounding air bubbles in microchannels
Abstract
As an air bubble translates in a microchannel, a thin film of liquid is formed on the bounding walls. In a microchannel with a rectangular cross section, the liquid in the film leaks towards the low-pressure corners of the geometry, which leads to the appearance of local minima in the film thickness in the cross-sectional plane. In such a configuration, theory suggests that the minimum film thickness scales with Ca and Ca(4/3) depending on the distance from the nose of the bubble, where Ca = μUb/γ is the flow capillary number based on the bubble velocity Ub, liquid viscosity μ and surface tension γ. We show that the film of a partially wetting liquid dewets on the channel wall at the sites of the local minima in the film thickness as it acquires thicknesses smaller than 100 nm. Our experiments show that the distance Lw between the nose of the bubble and the initial dewetting location is a function of Ca and surface wettability. For channels of different wettability, Lw always scales proportional to Caα, where 1.7 < α < 2 for the range of 10-5 < Ca < 10-2. Moreover, Lw increases up to 10 times by enhancing the wettability of the surface at a given Ca. Our present measurements of Lw provide a design constraint on the lengths of bubbles to maintain a liquid wet channel without dry patches on the wall.