People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arlinghaus, Henrich F.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Surface functionalization with carboxylic acids by photochemical microcontact printing and tetrazole chemistry
Abstract
In this paper, we show that carboxylic acid-functionalized molecules can be patterned by photochemical microcontact printing on tetrazole-terminated self-assembled monolayers. Upon irradiation, tetrazoles eliminate nitrogen to form highly reactive nitrile imines, which can be ligated with several different nucleophiles, carboxylic acids being the most reactive. As a proof of concept, we immobilized trifluoroacetic acid to monitor the reaction with X-ray photoelectron spectroscopy. Moreover, we also immobilized peptides and fabricated carbohydrate−lectin as well as biotin−streptavidin microarrays using this method. Surface-patterning was demonstrated by fluorescence microscopy and time-of-flight secondary ion mass spectrometry