Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hasan, Abshar

  • Google
  • 5
  • 12
  • 546

University of Nottingham

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2020Growth‐factor free multicomponent nanocomposite hydrogels that stimulate bone formation79citations
  • 2018Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility57citations
  • 2018Surface Functionalization of Ti6Al4V via Self-assembled Monolayers for Improved Protein Adsorption and Fibroblast Adhesion120citations
  • 2018Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications219citations
  • 2017A novel bio-sorbent comprising encapsulated Agrobacterium fabrum (SLAJ731) and iron oxide nanoparticles for removal of crude oil co-contaminant, lead Pb(II)71citations

Places of action

Chart of shared publication
Deste, Matteo
1 / 1 shared
Dawson, Jonathan
1 / 13 shared
Sun, Hongchen
1 / 1 shared
Mata, Alvaro
1 / 5 shared
Ramis, Jopeth
1 / 3 shared
Okesola, Babatunde O.
1 / 2 shared
Buttery, Lee
1 / 2 shared
Derkus, Burak
1 / 1 shared
Galeano, Carles C.
1 / 1 shared
Wu, Yuanhao
1 / 1 shared
Eglin, David
1 / 8 shared
Ni, Shilei
1 / 1 shared
Chart of publication period
2020
2018
2017

Co-Authors (by relevance)

  • Deste, Matteo
  • Dawson, Jonathan
  • Sun, Hongchen
  • Mata, Alvaro
  • Ramis, Jopeth
  • Okesola, Babatunde O.
  • Buttery, Lee
  • Derkus, Burak
  • Galeano, Carles C.
  • Wu, Yuanhao
  • Eglin, David
  • Ni, Shilei
OrganizationsLocationPeople

article

Surface Functionalization of Ti6Al4V via Self-assembled Monolayers for Improved Protein Adsorption and Fibroblast Adhesion

  • Hasan, Abshar
Abstract

Although metallic biomaterials find numerous biomedical applications, their inherent low bioactivity and poor osteointegration had been a great challenge for decades. Surface modification via silanization can serve as an attractive method for improving the aforementioned properties of such substrates. However, its effect on protein adsorption/conformation and subsequent cell adhesion and spreading has rarely been investigated. This work reports the in-depth study of the effect of Ti6Al4V surface functionalization on protein adsorption and cell behavior. We prepared self-assembled monolayers (SAMs) of five different surfaces (amine, octyl, mixed [1:1 ratio of amine:octyl], hybrid, and COOH). Synthesized surfaces were characterized by Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, contact angle goniometry, profilometry, and field emission scanning electron microscopy (FESEM). Quantification of adsorbed mass of bovine serum albumin (BSA) and fibronectin (FN) was determined on different surfaces along with secondary structure analysis. The adsorbed amount of BSA was found to increase with an increase in surface hydrophobicity with the maximum adsorption on the octyl surface while the reverse trend was detected for FN adsorption, having the maximum adsorbed mass on the COOH surface. The α-helix content of adsorbed BSA increased on amine and COOH surfaces while it decreased for other surfaces. Whereas increasing β-turn content of the adsorbed FN with the increase in the surface hydrophobicity was observed. In FN, RGD loops are located in the β-turn and consequently the increase in Δ adhered cells (%) was predominantly increased with the increasing Δ β-turn content (%). We found hybrid surfaces to be the most promising surface modifier due to maximum cell adhesion (%) and proliferation, larger nuclei area, and the least cell circularity. Bacterial density increased with the increasing hydrophobicity and was found maximum for the amine surface (θ = 63 ± 1°) which further decreased with the increasing hydrophobicity. Overall, modified surfaces (in particular hybrid surface) showed better protein adsorption and cell adhesion properties as compared to unmodified Ti6Al4V and can be potentially used for tissue engineering applications.

Topics
  • density
  • surface
  • functionalization
  • biomaterials
  • amine
  • scanning auger microscopy
  • spectroscopy
  • bioactivity
  • profilometry