Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhang, Zilin

  • Google
  • 2
  • 4
  • 49

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Monodispersed Sirolimus-Loaded PLGA Microspheres with a Controlled Degree of Drug-Polymer Phase Separation for Drug-Coated Implantable Medical Devices and Subcutaneous Injection12citations
  • 2017Facile Production of Biodegradable Bipolymer Patchy and Patchy Janus Particles with Controlled Morphology by Microfluidic Routes37citations

Places of action

Chart of shared publication
Vladisavljević, Goran T.
2 / 6 shared
Bolognesi, Guido
1 / 1 shared
Ekanem, Ekanem
2 / 4 shared
Nakajima, Mitsutoshi
1 / 1 shared
Chart of publication period
2022
2017

Co-Authors (by relevance)

  • Vladisavljević, Goran T.
  • Bolognesi, Guido
  • Ekanem, Ekanem
  • Nakajima, Mitsutoshi
OrganizationsLocationPeople

article

Facile Production of Biodegradable Bipolymer Patchy and Patchy Janus Particles with Controlled Morphology by Microfluidic Routes

  • Vladisavljević, Goran T.
  • Ekanem, Ekanem
  • Zhang, Zilin
Abstract

<p>Patchy and patchy Janus particles composed of poly(dl-lactic acid) (PLA) and polycaprolactone (PCL) regions were produced with a controlled size, patchiness, composition, and shape anisotropy by microfluidic emulsification and solvent evaporation. Isotropic particles composed of PCL patches embedded in the PLA matrix were produced from relatively small drops with a diameter of 14-25 μm because of the fast solvent extraction as a result of high interfacial area of the particles. Anisotropic patchy Janus particles were formed from large drops, 100-250 μm in diameter. A higher degree of polymer separation was achieved using a higher ratio of dichloromethane to ethyl acetate in the organic phase because of the more pronounced patch coarsening via Ostwald ripening. Janus particles with two fully separated polymer compartments were produced by in situ microfluidic mixing of two separate polymer streams within the formed droplets. The advantage of in situ micromixing is that the particle morphology can be changed continuously in a facile manner during drop generation by manipulating the organic stream flow rates. PCL and PLA domains within the particles were visualized by confocal laser scanning microscopy because of the preferential adsorption of rhodamine 6G dye onto PLA domains and higher binding affinity of Nile red toward PCL.</p>

Topics
  • impedance spectroscopy
  • polymer
  • phase
  • anisotropic
  • isotropic
  • interfacial
  • solvent extraction
  • confocal laser scanning microscopy
  • solvent evaporation
  • Ostwald ripening