Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dunkelberger, Adam D.

  • Google
  • 2
  • 13
  • 51

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Power of Aerogel Platforms to Explore Mesoscale Transport in Catalysis.14citations
  • 2017Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis37citations

Places of action

Chart of shared publication
Owrutsky, Jeff
2 / 2 shared
Yesinowski, James P.
1 / 1 shared
Glaser, Evan R.
1 / 1 shared
Pitman, Catherine L.
1 / 3 shared
Pietron, Jeremy
2 / 11 shared
Desario, Paul
2 / 25 shared
Brintlinger, Todd
2 / 10 shared
Rolison, Debra
2 / 14 shared
Melinger, Joseph S.
1 / 2 shared
Johannes, Michelle
1 / 1 shared
Miller, Joel
1 / 1 shared
Stroud, Rhonda M.
1 / 3 shared
Baturina, Olga A.
1 / 2 shared
Chart of publication period
2020
2017

Co-Authors (by relevance)

  • Owrutsky, Jeff
  • Yesinowski, James P.
  • Glaser, Evan R.
  • Pitman, Catherine L.
  • Pietron, Jeremy
  • Desario, Paul
  • Brintlinger, Todd
  • Rolison, Debra
  • Melinger, Joseph S.
  • Johannes, Michelle
  • Miller, Joel
  • Stroud, Rhonda M.
  • Baturina, Olga A.
OrganizationsLocationPeople

article

Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis

  • Owrutsky, Jeff
  • Stroud, Rhonda M.
  • Baturina, Olga A.
  • Pietron, Jeremy
  • Dunkelberger, Adam D.
  • Desario, Paul
  • Brintlinger, Todd
  • Rolison, Debra
Abstract

We use plasmonic Au–TiO2 aerogels as a platform in which to marry synthetically thickened particle–particle junctions in TiO2 aerogel networks to Au∥TiO2 interfaces and then investigate their cooperative influence on photocatalytic hydrogen (H2) generation under both broadband (i.e., UV + visible light) and visible-only excitation. In doing so, we elucidate the dual functions that incorporated Au can play as a water reduction cocatalyst and as a plasmonic sensitizer. We also photodeposit non-plasmonic Pt cocatalyst nanoparticles into our composite aerogels in order to leverage the catalytic water-reducing abilities of Pt. This Au–TiO2/Pt arrangement in three dimensions effectively utilizes conduction−band electrons injected into the TiO2 aerogel network upon exciting the Au SPR at the Au∥TiO2 interface. The extensive nanostructured high surface-area oxide network in the aerogel provides a matrix that spatially separates yet electrochemically connects plasmonic nanoparticle sensitizers and metal nanopartic...

Topics
  • nanoparticle
  • surface
  • composite
  • Hydrogen
  • surface plasmon resonance spectroscopy