People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brintlinger, Todd
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020Stabilization of reduced copper on ceria aerogels for CO oxidationcitations
- 2020Power of Aerogel Platforms to Explore Mesoscale Transport in Catalysis.citations
- 2018(Invited) Nanoscale Design and Modification of Plasmonic Aerogels for Photocatalytic Hydrogen Generation
- 2017Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO2 nanoarchitecturescitations
- 2017Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysiscitations
- 2017Effects of Nanoscale Interfacial Design on Photocatalytic Hydrogen Generation Activity at Plasmonic Au–TiO<sub>2</sub> and Au–TiO<sub>2</sub>/Pt Aerogels
- 2017Oxidation−Stable Plasmonic Copper Nanoparticles in Photocatalytic TiO<sub>2</sub> Nanoarchitectures
- 2013Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.citations
- 2013Electron Tomography of Gold Nanoparticles in Titania Composite Aerogels: Probing Structure to Understand Photochemistry
- 2008Electron thermal microscopycitations
Places of action
Organizations | Location | People |
---|
article
Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis
Abstract
We use plasmonic Au–TiO2 aerogels as a platform in which to marry synthetically thickened particle–particle junctions in TiO2 aerogel networks to Au∥TiO2 interfaces and then investigate their cooperative influence on photocatalytic hydrogen (H2) generation under both broadband (i.e., UV + visible light) and visible-only excitation. In doing so, we elucidate the dual functions that incorporated Au can play as a water reduction cocatalyst and as a plasmonic sensitizer. We also photodeposit non-plasmonic Pt cocatalyst nanoparticles into our composite aerogels in order to leverage the catalytic water-reducing abilities of Pt. This Au–TiO2/Pt arrangement in three dimensions effectively utilizes conduction−band electrons injected into the TiO2 aerogel network upon exciting the Au SPR at the Au∥TiO2 interface. The extensive nanostructured high surface-area oxide network in the aerogel provides a matrix that spatially separates yet electrochemically connects plasmonic nanoparticle sensitizers and metal nanopartic...