People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lauritsen, Jeppe Vang
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Atomic-Scale Site Characterization of Cu-Zn Exchange on Cu(111)citations
- 2023Steering carbon dioxide reduction toward C–C coupling using copper electrodes modified with porous molecular filmscitations
- 2023The interface of in-situ grown single-layer epitaxial MoS2 on SrTiO3(001) and (111)citations
- 2022Iron carbide formation on thin iron films grown on Cu(1 0 0)citations
- 2022WO3 Monomers Supported on Anatase TiO2(101), −(001), and Rutile TiO2(110)citations
- 2022Can the CO 2 Reduction Reaction Be Improved on Cu:Selectivity and Intrinsic Activity of Functionalized Cu Surfacescitations
- 2022Can the CO2Reduction Reaction Be Improved on Cucitations
- 2021Nanoscale Chevrel-Phase Mo6S8Prepared by a Molecular Precursor Approach for Highly Efficient Electrocatalysis of the Hydrogen Evolution Reaction in Acidic Mediacitations
- 2020Molecular Nanowire Bonding to Epitaxial Single-Layer MoS2 by an On-Surface Ullmann Coupling Reactioncitations
- 2020Cubes on a string:a series of linear coordination polymers with cubane-like nodes and dicarboxylate linkerscitations
- 2019Anisotropic iron-doping patterns in two-dimensional cobalt oxide nanoislands on Au(111)citations
- 2019Structural and electronic properties of Fe dopants in cobalt oxide nanoislands on Au(111)citations
- 2018Phase Transitions of Cobalt Oxide Bilayers on Au(111) and Pt(111)citations
- 2018Topotactic Growth of Edge-Terminated MoS 2 from MoO 2 Nanocrystalscitations
- 2018Topotactic Growth of Edge-Terminated MoS2 from MoO2 Nanocrystalscitations
- 2017Gold-supported two-dimensional cobalt oxyhydroxide (CoOOH) and multilayer cobalt oxide islandscitations
- 2017Edge reactivity and water-assisted dissociation on cobalt oxide nanoislandscitations
- 2015Electronic Structure of Epitaxial Single-Layer MoS2citations
- 2015Noncontact AFM Imaging of Atomic Defects on the Rutile TiO2 (110) Surfacecitations
- 2015Electronic structure of epitaxial single-layer MoS2citations
- 2015Synthesis of Epitaxial Single-Layer MoS2 on Au(111)citations
- 2014Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS2 on a Gold Surfacecitations
- 2014Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS 2 on a Gold Surfacecitations
- 2011Atomic-scale non-contact AFM studies of alumina supported nanoparticles
- 2011Stabilization Principles for Polar Surfaces of ZnOcitations
Places of action
Organizations | Location | People |
---|
article
Synthesis of Epitaxial Single-Layer MoS2 on Au(111)
Abstract
<p>We present a method for synthesizing large area epitaxial single-layer MoS2 on the Au(111) surface in ultrahigh vacuum. Using scanning tunneling microscopy and low energy electron diffraction, the evolution of the growth is followed from nanoscale single-layer MoS2 islands to a continuous MoS2 layer. An exceptionally good control over the MoS2 coverage is maintained using an approach based on cycles of Mo evaporation and sulfurization to first nucleate the MoS2 nanoislands and then gradually increase their size. During this growth process the native herringbone reconstruction of Au(111) is lifted as shown by low energy electron diffraction measurements. Within the MoS2 islands, we identify domains rotated by 60 that lead to atomically sharp line defects at domain boundaries. As the MoS2 coverage approaches the limit of a complete single layer, the formation of bilayer MoS2 islands is initiated. Angle-resolved photoemission spectroscopy measurements of both single and bilayer MoS2 samples show a dramatic change in their band structure around the center of the Brillouin zone. Brief exposure to air after removing the MoS2 layer from vacuum is not found to affect its quality.</p>