People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zakri, Cécile
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023High‐Energy‐Density Waterborne Dielectrics from Polyelectrolyte‐Colloid Complexescitations
- 2019Shape memory nanocomposite fibers for untethered high-energy microengines.citations
- 2018Preparation and electrical conductivity of different fibres prepared from vertically aligned carbon nanotubes
- 2018Giant Electrostriction of Soft Nanocomposites Based on Liquid Crystalline Graphenecitations
- 2017Large scale conductive films and patterns based on carbon nanotubes and graphene liquid crystals
- 2017Giant Electrostrictive Response and Piezoresistivity of Emulsion Templated Nanocompositescitations
- 2015Graphene liquid crystal retarded percolation for new high-k materialscitations
- 2015Graphene liquid crystal retarded percolation for new high-k materialscitations
- 2015Giant Permittivity Polymer Nanocomposites Obtained by Curing a Direct Emulsioncitations
- 2013Changes of morphology and properties of block copolymers induced by carbon nanotubescitations
- 2012Conductivity and percolation of nanotube based polymer composites in extensional deformationscitations
- 2011Scalable Process for the Spinning of PDV-CArbon Nanotube composite Fiberscitations
- 2009Influence of the Spinning Conditions on the Structure and Properties of Polyamide 12/Carbon Nanotube Composite Fiberscitations
- 2009Influence of the Spinning Conditions on the Structure and Properties of Polyamide 12/Carbon Nanotube Composite Fiberscitations
- 2009Kinetics of Nanotube and Microfiber Scission under Sonicationcitations
- 2009Kinetics of nanotube and microfiber scission under sonicationcitations
- 2008High-Conductivity Polymer Nanocomposites Obtained by Tailoring the Characteristics of Carbon Nanotube Fillerscitations
- 2007Shape and Temperature Memory of Nanocomposites with Broadened Glass Transitioncitations
Places of action
Organizations | Location | People |
---|
article
Giant Permittivity Polymer Nanocomposites Obtained by Curing a Direct Emulsion
Abstract
Near-percolated CNT−polymer composites are promising highpermittivity materials. The main challenge in the field consists of finding compromises that allow high permittivity and low losses in frequency ranges of interest. Using an emulsion approach and optimizing the size of the droplets and the curing procedure, we obtain unprecedented performances and measure giant permittivity larger than 20 000 at 100 Hz along with a conductivity below 10−4 S/m.