People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yuan, Jinkai
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Flowable Electrodes from Colloidal Suspensions of Thin Multiwall Carbon Nanotubescitations
- 2023Stabilized ferroelectric NaNbO3 nanowires for lead-free piezoelectric nanocomposite applicationscitations
- 2023G raphene O xide B ased T ransparent R esins F or A ccurate 3D P rinting of C onductive M aterialscitations
- 2023High‐Energy‐Density Waterborne Dielectrics from Polyelectrolyte‐Colloid Complexescitations
- 2022Water-Processable Cellulosic Nanocomposites as Green Dielectric Films for High-Energy Storagecitations
- 2022Water-processable cellulosic nanocomposites as green dielectric films for high-energy storage ; Energy Stor. Mater.citations
- 2021Inkjet Printing Microcapacitors for Energy Storage
- 2019Absence of giant dielectric permittivity in graphene oxide materials Absence of giant dielectric permittivity in graphene oxide materialscitations
- 2019Shape memory nanocomposite fibers for untethered high-energy microengines.citations
- 2019Shape memory nanocomposite fibers for untethered high-energy microenginescitations
- 2018All-organic microelectromechanical systems integrating electrostrictive nanocomposite for mechanical energy harvestingcitations
- 2018Giant Electrostriction of Soft Nanocomposites Based on Liquid Crystalline Graphenecitations
- 2017Carbon nanotube forest based electrostatic capacitor with excellent dielectric performancescitations
- 2017Giant Electrostrictive Response and Piezoresistivity of Emulsion Templated Nanocompositescitations
- 2015Graphene liquid crystal retarded percolation for new high-k materialscitations
- 2015Graphene liquid crystal retarded percolation for new high-k materialscitations
- 2015Giant Permittivity Polymer Nanocomposites Obtained by Curing a Direct Emulsioncitations
Places of action
Organizations | Location | People |
---|
article
Giant Permittivity Polymer Nanocomposites Obtained by Curing a Direct Emulsion
Abstract
Near-percolated CNT−polymer composites are promising highpermittivity materials. The main challenge in the field consists of finding compromises that allow high permittivity and low losses in frequency ranges of interest. Using an emulsion approach and optimizing the size of the droplets and the curing procedure, we obtain unprecedented performances and measure giant permittivity larger than 20 000 at 100 Hz along with a conductivity below 10−4 S/m.