Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brouwer, Albert Manfred

  • Google
  • 7
  • 38
  • 198

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Light-controlled morphological development of self-organizing bioinspired nanocomposites5citations
  • 2023Using supramolecular machinery to engineer directional charge propagation in photoelectrochemical devices22citations
  • 2023Super-resolution Fluorescence Imaging of Recycled Polymer Blends via Hydrogen Bond-Assisted Adsorption of a Nile Red Derivative1citations
  • 2022Light-Controlled Nucleation and Shaping of Self-Assembling Nanocomposites18citations
  • 2022Molecular rotors to probe the local viscosity of a polymer glass9citations
  • 2020Key Role of Very Low Energy Electrons in Tin-Based Molecular Resists for Extreme Ultraviolet Nanolithography84citations
  • 2015Fluorescence Microscopy Visualization of Contacts Between Objects59citations

Places of action

Chart of shared publication
Bistervels, Marloes H.
1 / 2 shared
Noorduin, Willem
1 / 2 shared
Schoenmaker, Hinco
1 / 2 shared
Hoogendoorn, Niels T.
1 / 1 shared
Kamp, Marko
1 / 2 shared
Bakker, T. M. A.
1 / 1 shared
Mathew, S.
1 / 5 shared
Dieperink, M.
1 / 1 shared
Hasenack, J.
1 / 1 shared
Reek, J. N. H.
1 / 9 shared
Bouwens, T.
1 / 1 shared
Huijser, A.
1 / 1 shared
Zhu, K.
1 / 2 shared
Hsu, C.-C.
1 / 2 shared
Bonn, D.
2 / 34 shared
Rückel, M.
1 / 2 shared
Schoenmakers, H.
1 / 1 shared
Noorduin, W. L.
1 / 10 shared
Bistervels, M. H.
1 / 3 shared
Kamp, M.
1 / 14 shared
Grzelka, Marion
1 / 4 shared
Mirzahossein, Elham
1 / 1 shared
Pan, Zhongcheng
1 / 1 shared
Bonn, Daniel
1 / 23 shared
Habibi, Mehdi
1 / 9 shared
Demirkurt, Begüm
1 / 1 shared
Molen, S. J. Van Der
1 / 5 shared
Castellanos, S.
1 / 3 shared
Haitjema, J.
1 / 2 shared
Zhang, Y.
1 / 149 shared
Bespalov, I.
1 / 2 shared
Tromp, R. M.
1 / 6 shared
Jobst, J.
1 / 4 shared
Suhina, T.
1 / 1 shared
Lorincz, K.
1 / 1 shared
Carpentier, C. E.
1 / 1 shared
Schall, Peter
1 / 16 shared
Weber, B.
1 / 17 shared
Chart of publication period
2024
2023
2022
2020
2015

Co-Authors (by relevance)

  • Bistervels, Marloes H.
  • Noorduin, Willem
  • Schoenmaker, Hinco
  • Hoogendoorn, Niels T.
  • Kamp, Marko
  • Bakker, T. M. A.
  • Mathew, S.
  • Dieperink, M.
  • Hasenack, J.
  • Reek, J. N. H.
  • Bouwens, T.
  • Huijser, A.
  • Zhu, K.
  • Hsu, C.-C.
  • Bonn, D.
  • Rückel, M.
  • Schoenmakers, H.
  • Noorduin, W. L.
  • Bistervels, M. H.
  • Kamp, M.
  • Grzelka, Marion
  • Mirzahossein, Elham
  • Pan, Zhongcheng
  • Bonn, Daniel
  • Habibi, Mehdi
  • Demirkurt, Begüm
  • Molen, S. J. Van Der
  • Castellanos, S.
  • Haitjema, J.
  • Zhang, Y.
  • Bespalov, I.
  • Tromp, R. M.
  • Jobst, J.
  • Suhina, T.
  • Lorincz, K.
  • Carpentier, C. E.
  • Schall, Peter
  • Weber, B.
OrganizationsLocationPeople

article

Super-resolution Fluorescence Imaging of Recycled Polymer Blends via Hydrogen Bond-Assisted Adsorption of a Nile Red Derivative

  • Hsu, C.-C.
  • Bonn, D.
  • Brouwer, Albert Manfred
  • Rückel, M.
Abstract

<p>A key challenge in the recycling of multilayer plastic films of polyethylene and polyamide, as typically used for food packaging, is to assess and control the phase separation of the two types of polymers in the recycled material, the specifics of which determine the mechanical strength of the recycled material. However, visualizing the polyamide-in-polyethylene domains with conventional fluorescence methods or electron microscopy is challenging. We present a new approach that combines the point accumulation in nanoscale topography (PAINT) super-resolution method with a newly synthesized Nile Red probe (diOHNR) as the fluorescent label. The molecule was modified to undergo a hydrogen bond-assisted interaction with the polyamide phase in the blend due to its two additional hydroxyl groups but preserves the spectral properties of Nile Red. As a result, the localization density of the probe in the PAINT image is 13 times larger at the polyamide phase than at the polyethylene phase, enabling quantitative evaluation of the spatial polyamide/polyethylene distribution down to the nanoscale. The method achieved a spatial resolution of 18.8 nm, and we found that over half of the polyamide particles in a recycled sample were smaller than the optical diffraction limit. Being able to image the blends with nanoscopic resolution can help to optimize the composition and mechanical properties of recycled materials and thus contribute to an increased reuse of plastics.</p>

Topics
  • density
  • impedance spectroscopy
  • phase
  • strength
  • Hydrogen
  • electron microscopy
  • polymer blend