People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, Satish
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024MAX Phase Ti<sub>2</sub>AlN for HfO<sub>2</sub> Memristors with Ultra‐Low Reset Current Density and Large On/Off Ratiocitations
- 2024Multi-Objective Optimization of Friction Stir Processing Tool with Composite Material Parameters
- 2023Photochemically Induced Marangoni Patterning of Polymer Bilayers
- 2023Wear performance analysis of B<sub>4</sub>C and graphene particles reinforced Al–Cu alloy based composites using Taguchi methodcitations
- 2023Evolution of flow reversal and flow heterogeneities in high elasticity wormlike micelles (WLMs) with a yield stresscitations
- 2022SURFACE EROSION PERFORMANCE OF YTTRIUM OXIDE BLENDED WC-12CO THERMALLY SPRAYED COATING FOR MILD STEELcitations
- 2022Controlling Surface Deformation and Feature Aspect Ratio in Photochemically Induced Marangoni Patterning of Polymer Filmscitations
- 2021Criteria Governing Rod Formation and Growth in Nonionic Polymer Micellescitations
- 2021Achieving Stable Patterns in Multicomponent Polymer Thin Films Using Marangoni and van der Waals Forcescitations
- 2021Study on Solid Particle Erosion of Pump Materials by Fly Ash Slurry using Taguchi’s Orthogonal Arraycitations
- 2020Self-aligned capillarity-assisted printing of high aspect ratio flexible metal conductorscitations
- 2019Dynamic wetting failure in curtain coatingcitations
- 2017Droplet wetting transitions on inclined substrates in the presence of external shear and substrate permeabilitycitations
- 2016Dynamic wetting failure and hydrodynamic assist in curtain coatingcitations
- 2015Combined thermal and electrohydrodynamic patterning of thin liquid filmscitations
- 2011Highly conducting and flexible few-walled carbon nanotube thin filmcitations
- 2010Meltblown fiberscitations
- 2010Transient growth without inertiacitations
- 2010Transient response of velocity fluctuations in inertialess channel flows of viscoelastic fluids
- 2004Instability of viscoelastic plane Couette flow past a deformable wallcitations
- 2000Shear banding and secondary flow in viscoelastic fluids between a cone and platecitations
Places of action
Organizations | Location | People |
---|
article
Photochemically Induced Marangoni Patterning of Polymer Bilayers
Abstract
<p>Surface-tension gradients created along a polymer film by patterned photochemical reactions are a powerful tool for creating surface topography. Here, we use mathematical modeling to explore a strategy for patterning photochemically inactive polymers by coupling a light-sensitive and light-insensitive polymer to form a polymer bilayer. The light-sensitive polymer forms the top layer, and the most dominant surface-tension gradients are introduced at the interface between this layer and air. Lubrication theory is used to derive nonlinear partial differential equations describing the heights of each layer, and linear analysis and nonlinear simulations are performed to characterize interface dynamics. Patterns form at both the polymer-air and polymer-polymer interfaces at early thermal annealing times as a result of Marangoni stresses but decay on prolonged thermal annealing as a result of the dissipative mechanisms of capillary leveling and photoproduct diffusion, thus setting a limit to the maximum individual layer deformation. Simulations also show that the bottom-layer features can remain “trapped”, i.e., exhibit no significant decay, even while the top layer topography has dissipated. We study the effects of two key parameters, the initial thickness ratio and the viscosity ratio of the two polymers, on the maximum deformation attained in the bottom layer and the time taken to attain this deformation. We identify regions of parameter space where the maximum bottom-layer deformation is enhanced and the attainment time is reduced. Overall, our study provides guidelines for designing processes to pattern photochemically inactive polymers and create interfacial topography in polymer bilayers.</p>