People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Erbe, Artur
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2021Controlled Silicidation of Silicon Nanowires Using Flash Lamp Annealingcitations
- 2019Towards reconfigurable electronics: Silicidation of top-down fabricated silicon nanowirescitations
- 2019Nanoscale n(++)-p junction formation in GeOI probed by tip-enhanced Raman spectroscopy and conductive atomic force microscopycitations
- 2014Effect of Waveform of ac Voltage on the Morphology and Crystallinity of Electrochemically Assembled Platinum Nanowirescitations
- 2013Control over Janus micromotors by the strength of a magnetic fieldcitations
Places of action
Organizations | Location | People |
---|
article
Controlled Silicidation of Silicon Nanowires Using Flash Lamp Annealing
Abstract
<p>Among other new device concepts, nickel silicide (NiSix)-based Schottky barrier nanowire transistors are projected to supplement down-scaling of the complementary metal-oxide semiconductor (CMOS) technology as its physical limits are reached. Control over the NiSix phase and its intrusions into the nanowire is essential for superior performance and down-scaling of these devices. Several works have shown control over the phase, but control over the intrusion lengths has remained a challenge. To overcome this, we report a novel millisecond-range flash lamp annealing (FLA)-based silicidation process. Nanowires are fabricated on silicon-on-insulator substrates using a top-down approach. Subsequently, Ni silicidation experiments are carried out using FLA. It is demonstrated that this silicidation process gives unprecedented control over the silicide intrusions. Scanning electron microscopy and high-resolution transmission electron microscopy are performed for structural characterization of the silicide. FLA temperatures are estimated with the help of simulations.</p>