People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Smulders, Maarten M. J.
Wageningen University & Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Covalent adaptable networks using boronate linkages by incorporating TetraAzaADamantanescitations
- 2023Covalent adaptable networks using boronate linkages by incorporating TetraAzaADamantanescitations
- 2023Internal hydrogen bonding of imines to control and enhance the dynamic mechanical properties of covalent adaptable networkscitations
- 2023Metal Coordination in Polyimine Covalent Adaptable Networks for Tunable Material Properties and Enhanced Creep Resistancecitations
- 2022Raman Spectroscopy Reveals Phase Separation in Imine-Based Covalent Adaptable Networkscitations
- 2022Raman Spectroscopy Reveals Phase Separation in Imine-Based Covalent Adaptable Networkscitations
- 2022Self-healing antifouling polymer brushescitations
- 2022Diblock and random antifouling bioactive polymer brushes on gold surfaces by visible-light-induced polymerization (SI-PET-RAFT) in watercitations
- 2022Self-healing antifouling polymer brushes : Effects of degree of fluorinationcitations
- 2021Zwitterionic dendrimer – Polymer hybrid copolymers for self-assembling antifouling coatingscitations
- 2021The effect of polarity on the molecular exchange dynamics in imine-based covalent adaptable networkscitations
- 2020PLL-Poly(HPMA) Bottlebrush-Based Antifouling Coatings: Three Grafting Routescitations
Places of action
Organizations | Location | People |
---|
article
PLL-Poly(HPMA) Bottlebrush-Based Antifouling Coatings: Three Grafting Routes
Abstract
In this work, we compare three routes to prepare antifouling coatings that consist of poly(l-lysine)-poly(N-(2-hydroxypropyl)methacrylamide) bottlebrushes. The poly(l-lysine) (PLL) backbone is self-assembled onto the surface by charged-based interactions between the lysine groups and the negatively charged silicon oxide surface, whereas the poly(N-(2-hydroxypropyl)methacrylamide) [poly(HPMA)] side chains, grown by reversible addition-fragmentation chain-transfer (RAFT) polymerization, provide antifouling properties to the surface. First, the PLL-poly(HPMA) coatings are synthesized in a bottom-up fashion through a grafting-from approach. In this route, the PLL is self-assembled onto a surface, after which a polymerization agent is immobilized, and finally HPMA is polymerized from the surface. In the second explored route, the PLL is modified in solution by a RAFT agent to create a macroinitiator. After self-assembly of this macroinitiator onto the surface, poly(HPMA) is polymerized from the surface by RAFT. In the third and last route, the whole PLL-poly(HPMA) bottlebrush is initially synthesized in solution. To this end, HPMA is polymerized from the macroinitiator in solution and the PLL-poly(HPMA) bottlebrush is then self-assembled onto the surface in just one step (grafting-to approach). Additionally, in this third route, we also design and synthesize a bottlebrush polymer with a PLL backbone and poly(HPMA) side chains, with the latter containing 5% carboxybetaine (CB) monomers that eventually allow for additional (bio)functionalization in solution or after surface immobilization. These three routes are evaluated in terms of ease of synthesis, scalability, ease of characterization, and a preliminary investigation of their antifouling performance. All three coating procedures result in coatings that show antifouling properties in single-protein antifouling tests. This method thus presents a new, simple, versatile, and highly scalable approach for the manufacturing of PLL-based bottlebrush coatings that can be ...