People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Canil, Laura
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2021Tuning halide perovskite energy levelscitations
- 2021Tuning halide perovskite energy levelscitations
- 2020Monitoring Charge Carrier Diffusion across a Perovskite Film with Transient Absorption Spectroscopycitations
- 2020Tuning halide perovskite energy levelscitations
- 2019Refractive index change dominates the transient absorption response of metal halide perovskite thin films in the near infraredcitations
Places of action
Organizations | Location | People |
---|
article
Monitoring Charge Carrier Diffusion across a Perovskite Film with Transient Absorption Spectroscopy
Abstract
We have developed a new noninvasive optical method for monitoring charge carrier diffusion and mobility in semiconductor thin films in the direction perpendicular to the surface which is most relevant for devices. The method is based on standard transient absorption measurements carried out in reflectance and transmittance modes at wavelengths below the band gap where the transient response is mainly determined by the change in refractive index, which in turn depends on the distribution of photogenerated carriers across the film. This distribution is initially inhomogeneous because of absorption at the excitation wavelength and becomes uniform over time via diffusion. By modeling these phenomena we can determine the diffusion constant and respective mobility. Applying the method to a 500 nm thick triple cation FAMACs perovskite film revealed that homogeneous carrier distribution is established in few hundred picoseconds, which is consistent with mobility of 66 cm2 (V s)-1. ; Peer reviewed