Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cova, Federico

  • Google
  • 3
  • 11
  • 141

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Origin of pressure-induced band gap tuning in tin halide perovskites31citations
  • 2020Origin of pressure-induced band gap tuning in tin halide perovskites31citations
  • 2019Band Gap Engineering in MASnBr3and CsSnBr3 Perovskites: Mechanistic Insights through the Application of Pressure79citations

Places of action

Chart of shared publication
Mahata, Arup
3 / 5 shared
Mosconi, Edoardo
3 / 34 shared
Coduri, Mauro
3 / 14 shared
Angelis, Filippo De
2 / 30 shared
Strobel, Timothy A.
3 / 5 shared
Shiell, Thomas B.
2 / 2 shared
Malavasi, Lorenzo
3 / 46 shared
De Angelis, Filippo
1 / 32 shared
Katrusiak, Andrzej
1 / 30 shared
Szafrański, Marek
1 / 23 shared
Bonomi, Sara
1 / 7 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Mahata, Arup
  • Mosconi, Edoardo
  • Coduri, Mauro
  • Angelis, Filippo De
  • Strobel, Timothy A.
  • Shiell, Thomas B.
  • Malavasi, Lorenzo
  • De Angelis, Filippo
  • Katrusiak, Andrzej
  • Szafrański, Marek
  • Bonomi, Sara
OrganizationsLocationPeople

article

Band Gap Engineering in MASnBr3and CsSnBr3 Perovskites: Mechanistic Insights through the Application of Pressure

  • Katrusiak, Andrzej
  • Szafrański, Marek
  • Mahata, Arup
  • Mosconi, Edoardo
  • Coduri, Mauro
  • Angelis, Filippo De
  • Strobel, Timothy A.
  • Cova, Federico
  • Bonomi, Sara
  • Malavasi, Lorenzo
Abstract

Here we report on the first structural and optical high-pressure investigation of MASnBr3 (MA = [CH3NH3]+) and CsSnBr3 halide perovskites. A massive red shift of 0.4 eV for MASnBr3 and 0.2 eV for CsSnBr3 is observed within 1.3 to 1.5 GPa from absorption spectroscopy, followed by a huge blue shift of 0.3 and 0.5 eV, respectively. Synchrotron powder diffraction allowed us to correlate the upturn in the optical properties trend (onset of blue shift) with structural phase transitions from cubic to orthorhombic in MASnBr3 and from tetragonal to monoclinic for CsSnBr3. Density functional theory calculations indicate a different underlying mechanism affecting the band gap evolution with pressure, a key role of metal-halide bond lengths for CsSnBr3 and cation orientation for MASnBr3, thus showing the impact of a different A-cation on the pressure response. Finally, the investigated phases, differently from the analogous Pb-based counterparts, are robust against amorphization showing defined diffraction up to the maximum pressure used in the experiments

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • phase
  • theory
  • experiment
  • phase transition
  • density functional theory