People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wen, Xiaoming
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Activated charcoal-mediated non-contact carbothermal reduction of TiO2 for controlled synthesis of Magnéli phase titanium suboxidescitations
- 2017Spatial distribution of lead iodide and local passivation on organo-lead halide perovskitecitations
- 2017Inverted Hysteresis in CH3NH3PbI3 Solar Cellscitations
- 2016Extended hot carrier lifetimes observed in bulk In0.265±0.02Ga0.735N under high-density photoexcitationcitations
- 2015Effect of blend composition on binary organic solar cells using a low band gap polymercitations
- 2009Thermal quenching of photoluminescence in ZnO/ZnMgO multiple quantum wells following oxygen implantation and rapid thermal annealingcitations
- 2007Temperature dependent photoluminescence in oxygen ion implanted and rapid thermally annealed ZnOZnMgO multiple quantum wellscitations
Places of action
Organizations | Location | People |
---|
article
Inverted Hysteresis in CH3NH3PbI3 Solar Cells
Abstract
<p>J-V hysteresis in perovskite solar cells is known to be strongly dependent on many factors ranging from the cell structure to the preparation methods. Here we uncover one likely reason for such sensitivity by linking the stoichiometry in pure CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> (MAPbI<sub>3</sub>) perovskite cells with the character of their hysteresis behavior through the influence of internal band offsets. We present evidence indicating that in some cells the ion accumulation occurring at large forward biases causes a temporary and localized increase in recombination at the MAPbI<sub>3</sub>/TiO<sub>2</sub> interface, leading to inverted hysteresis at fast scan rates. Numerical semiconductor models including ion accumulation are used to propose and analyze two possible origins for these localized recombination losses: one based on band bending and the other on an accumulation of ionic charge in the perovskite bulk.</p>